1
|
Zhou C, Qin W, Tu C, Chen Y, Fu S, Liu B. Total Synthesis of Euphane Triterpenoids Using Metal-Catalyzed Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2025; 64:e202503943. [PMID: 40110973 DOI: 10.1002/anie.202503943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Euphane triterpenoids are widely distributed in nature and show various intriguing bioactivities, but relatively few synthetic routes to them have been described. Here, we report asymmetric convergent total syntheses of euphanes involving two triterpenoids and two nortriterpenoids: euphol, 25,26,27-trisnor-3β-hydroxy-euphan-24-al, euphorbiumrin D, and 3-oxo-tirucall-7-ene-3,20-dione. The syntheses employ an enantioselective Antilla allylboration and intramolecular radical cyclization to construct ring A, a palladium-catalyzed Liebeskind stannane-thioester coupling to connect ring A with the bicyclic CD system, and a novel radical cascade with metal-catalyzed hydrogen atom transfer (MHAT) to complete the polycyclic architecture. The late-stage syntheses of both triterpenoids feature a diimide reduction and a MHAT/1,5-hydrogen transfer cascade to diastereoselectively forge the C20 and C17 stereogenic centers.
Collapse
Affiliation(s)
- Chengying Zhou
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Weitian Qin
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Canhui Tu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Yunxuan Chen
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Ushakov PY, Sukhorukov AY. Recent advances in the application of the isoxazoline route to aldols in the synthesis of natural products. Nat Prod Rep 2025; 42:876-910. [PMID: 40110917 DOI: 10.1039/d4np00069b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Covering: 2000 to 2024The cycloaddition of nitrile oxides with olefins (NOC), followed by reductive cleavage of the resulting isoxazolines, has been widely recognised as a convenient and powerful synthetic strategy for constructing the aldol motif in natural product synthesis. Different modes of NOC (intermolecular, fused and bridged intramolecular) enable the synthesis of diverse isoxazoline products, which can be converted into highly substituted cyclic and acyclic aldol frameworks. This review examines the advances in this field over the past 25 years. More than 50 total syntheses are discussed, encompassing various classes of natural compounds, including macrolides, alkaloids, terpenoids, steroids, pseudosugars, sulfolipids and some others. Moreover, the basic aspects of this methodology are outlined, including methods for the generation of nitrile oxides and isoxazoline ring cleavage, as well as stereochemical models for intramolecular nitrile oxide cycloaddition.
Collapse
Affiliation(s)
- Pavel Yu Ushakov
- Laboratory of Organic and Metal-Organic Nitrogen-oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, Moscow, 119991, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Yao W, Liu Z, Ling H, Wang H, Zheng H, Wang SH, Zhu DY, Zhang SY, Chen X. Convergent Total Synthesis of (-)-Calidoustene. J Am Chem Soc 2025; 147:15963-15969. [PMID: 40298127 DOI: 10.1021/jacs.5c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The first total synthesis of the sesterterpenoid (-)-calidoustene has been accomplished, featuring a stereoselective Michael/aldol cascade to construct the trans-hydrindane backbone, a tandem Pummerer/Sakurai cyclization to establish the bicyclo[3.2.1]octane framework, a metallaphotoredox enone coupling followed by MHAT-initiated cyclization to forge the congested central C-ring, and late-stage functionalization via Cu-catalyzed desaturation and diimide reduction.
Collapse
Affiliation(s)
- Weidong Yao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Ziqi Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hao Ling
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hongyu Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hufeng Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Sheng-Yong Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Xiaoming Chen
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China, 518055
| |
Collapse
|
4
|
Wen G, Gu S, Chen J, He H, Gao S. Synthetic Studies of Zoaramine: Construction of the Tetracyclic Skeleton in High Oxidation State. Org Lett 2025; 27:2310-2316. [PMID: 40029242 DOI: 10.1021/acs.orglett.4c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report herein the synthetic studies toward zoaramine, a member of the family of zoaramine-type marine natural products bearing a unique structure. The major synthetic challenge is the stereoselective construction of the congested tetracyclic [6-6-6-6] skeleton in a high oxidation state. Our key strategies are the following: (1) radical cyclization was designed to install the quaternary stereocenters at C-9, C-22, and C-12 as well as formation of the B and D rings; (2) selective oxidations were realized to introduce the functional groups at C-11 and C-24 by using O2/t-BuOK-promoted hydroxylation and MeReO3-catalyzed Rubottom oxidation. Our studies reveal a special reactivity and stereocontrol model in the specific chemical environments, which might benefit the related synthetic exploration of this family of natural alkaloids.
Collapse
Affiliation(s)
- Guoen Wen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200050, China
| | - Shuo Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200050, China
| | - Jie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200050, China
| | - Haibing He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200050, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
5
|
Zhang W, Sunami K, Liu S, Triana D, Tachrim ZP, Kikuchi R, Taniguchi T, Monde K, Takehara T, Zhou DY, Suzuki T, Hashidoko Y, Hashimoto M, Murai Y. Scalable preparation of furanosteroidal viridin, β-viridin and viridiol from Trichoderma virens. Sci Rep 2025; 15:3110. [PMID: 39856167 PMCID: PMC11760887 DOI: 10.1038/s41598-025-87070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Viridin and viridiol, along with wortmannin, metabolized by filamentous fungus Trichoderma virens, are identical furanosteroids with high-potent inhibitory activity towards phosphatidylinositol 3-kinase (PI3K) that associates the growth of tumor cells. Therefore, structure-activity relationship study (SAR) of these furanosteroids contributes to the development of novel drugs. However, rational supply methods have not been established yet. In this study, we generated an efficient method to produce both viridin and viridiol by using a unique pH regulated T. virens culture manner. Besides, we successfully obtained β-viridin (epimer of viridin) crystal and X-ray structure, of which the CAS number was registered without stereochemistry. Furthermore, applying the original method to stable isotope study, we also obtained [U-13C]-viridn and [U-13C]-viridol by using [U-13C6]-glucose as a carbon source replacing normal glucose which can be used to elucidate the biosynthesis pathway of furanosteroids.
Collapse
Affiliation(s)
- Wen Zhang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
| | - Kazu Sunami
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
| | - Shuo Liu
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
| | - Desita Triana
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
| | - Zetryana Puteri Tachrim
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Kawasan Sains Teknologi (KST) BJ Habibie, South Tangerang, 15314, Indonesia
| | - Rikuto Kikuchi
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Tohru Taniguchi
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
| | - Da-Yang Zhou
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan.
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Hokkaido, Japan.
| |
Collapse
|
6
|
Ricca M, Yao S, Le T, White JM, Donnelly PS, Rizzacasa MA. A cis-β-iron(III) SALPN catalyst for hydrogen atom transfer reductions and olefin cross couplings. Org Biomol Chem 2023; 21:6789-6793. [PMID: 37566401 DOI: 10.1039/d3ob01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
An inexpensive Fe(III) SALPN catalyst for MHAT reactions such as reductions of α,β-unsaturated carbonyl compounds and olefin cross couplings is reported. The majority of these reactions proceeded in good yields and high stereoselectivities with low catalyst loadings at room temperature.
Collapse
Affiliation(s)
- Michael Ricca
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | - Shaolei Yao
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | - Tommy Le
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | - Jonathan M White
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | - Paul S Donnelly
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Ding S, Shi Y, Yang B, Hou M, He H, Gao S. Asymmetric Total Synthesis of Hasubanan Alkaloids: Periglaucines A-C, N,O-Dimethyloxostephine and Oxostephabenine. Angew Chem Int Ed Engl 2023; 62:e202214873. [PMID: 36357322 DOI: 10.1002/anie.202214873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/12/2022]
Abstract
We report herein the asymmetric total synthesis of periglaucines A-C, N,O-dimethyloxostephine and oxostephabenine. The key strategies used include: 1) a RhI -catalyzed regio- and diastereoselective Hayashi-Miyaura reaction to connect two necessary fragments; 2) an intramolecular photoenolization/Diels-Alder (PEDA) reaction to construct the highly functionalized tricyclic core skeleton bearing a quaternary center; 3) a bio-inspired intramolecular Michael addition and transannular acetalization to generate the aza[4.4.3]propellane and the tetrahydrofuran ring.
Collapse
Affiliation(s)
- Shaolei Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yingbo Shi
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu, 610068, China
| | - Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Haibing He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China.,Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
9
|
Momeni T, Zadsirjan V, Hadi Meshkatalsadat M, Pourmohammadi‐Mahunaki M. Applications of Cobalt‐Catalyzed Reactions in the Total Synthesis of Natural Products. ChemistrySelect 2022. [DOI: 10.1002/slct.202202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tayebeh Momeni
- Department of Chemistry Qom University of Technology Qom Iran 3718146645
- Department of Chemistry School of Science Alzahra University Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry Malek Ashtar University of Technology Tehran Iran
| | | | | |
Collapse
|
10
|
Lu HH, Gan KJ, Ni FQ, Zhang Z, Zhu Y. Concise Total Synthesis of Salimabromide. J Am Chem Soc 2022; 144:18778-18783. [PMID: 36194507 DOI: 10.1021/jacs.2c08337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We achieved a concise total synthesis of salimabromide by using a novel intramolecular radical cyclization to simultaneously construct the unique benzo-fused [4.3.1] carbon skeleton and the vicinal quaternary stereocenters. Other notable transformations include a tandem Michael/Mukaiyama aldol reaction to introduce most of the molecule's structural elements, along with hidden information for late-stage transformations, an intriguing tandem oxidative cyclization of a diene to form the bridged butyrolactone and enone moieties spontaneously, and a highly enantioselective hydrogenation of a cycloheptenone derivative (97% ee) that paved the way for the asymmetric synthesis of salimabromide.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fu-Qiang Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Yao Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
11
|
Umemoto N, Imayoshi A, Tsubaki K. Development of Regio- and Face-Selective [2 + 3] Cycloaddition Reactions of Readily Preparable Oxime-Substituted Nitrile Oxides with Silicon-Linked Allylic-Alcohol Moieties for Intramolecular Reactions. CHEM LETT 2022. [DOI: 10.1246/cl.220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nao Umemoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
12
|
Mandal S, Thirupathi B. Total synthesis of proposed elgonene C and its (4 R,5 R)-diastereomer. Org Biomol Chem 2022; 20:3922-3929. [PMID: 35258060 DOI: 10.1039/d2ob00094f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of the proposed elgonene C (1) and its (4R,5R)-diastereomer (1a) has been achieved using a second-generation oxazaborolidinium ion-catalysed Diels-Alder reaction, Sharpless asymmetric dihydroxylation, and a Ni-catalysed cross-carboxyl coupling reaction via redox-active ester (RAE) formation as key reactions. The spectral and analytical data for our synthetic compounds 1 and 1a do not match the isolation data provided by Stadler et al. which indicates that structural revision is required for the proposed elgonene C.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| |
Collapse
|
13
|
Umemoto N, Imayoshi A, Kazunori T. Development of regioselective [2 + 3] cycloaddition reactions of nitrile oxides with alkenes using intramolecular reactions through oxime groups [1]. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Sasaki M, Iwasaki K, Arai K, Hamada N, Umehara A. Convergent Synthesis of the HIJKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1 by a Late-Stage Reductive Olefin Coupling Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Naoya Hamada
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| |
Collapse
|
15
|
Li LP, Han JQ, Liu YT, Yang F, Wu X, Xie JH, Zhou QL. A Three-Step Process to Facilitate the Enantioselective Assembly of Cis-Fused Octahydrophenanthrenes with a Quaternary Stereocenter. Org Lett 2022; 24:2590-2595. [PMID: 35357843 DOI: 10.1021/acs.orglett.2c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-step process for the enantioselective assembly of cis-fused octahydrophenanthrenes with a quaternary stereocenter is reported. This synthetic strategy relies on a regioselective γ-alkylation, a one-pot sequence of asymmetric hydrogenation and oxidation, and an intramolecular enolate arylation to facilitate the rapid and enantioselective construction of cis-fused octahydrophenanthrene scaffolds with an arylated all-carbon quaternary stereocenter concisely and efficiently.
Collapse
Affiliation(s)
- Lin-Ping Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yun-Ting Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| |
Collapse
|
16
|
Yamaguchi Y, Seino Y, Suzuki A, Kamei Y, Yoshino T, Kojima M, Matsunaga S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis. Org Lett 2022; 24:2441-2445. [DOI: 10.1021/acs.orglett.2c00700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
17
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
18
|
Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. Divergent Total Syntheses of (-)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J Am Chem Soc 2022; 144:2495-2500. [PMID: 35112847 DOI: 10.1021/jacs.1c13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hydrogen atom transfer (HAT)-initiated Dowd-Beckwith rearrangement reaction was developed, which enables the efficient assembly of diversely functionalized polyquinane frameworks. By incorporation of an iridium-catalyzed regio- and enantioselective hydrogenation and a diastereocontrolled ODI-[5+2] cycloaddition/pinacol rearrangement cascade reaction, the asymmetric total syntheses of eight tetraquinane natural products, including (-)-crinipellins A-F and (-)-dihydrocrinipellins A and B, have been achieved in a concise and divergent manner.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengping Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Fang X, Zhang N, Chen SC, Luo T. Scalable Total Synthesis of (-)-Triptonide: Serendipitous Discovery of a Visible-Light-Promoted Olefin Coupling Initiated by Metal-Catalyzed Hydrogen Atom Transfer (MHAT). J Am Chem Soc 2022; 144:2292-2300. [PMID: 35089705 DOI: 10.1021/jacs.1c12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient and scalable total synthesis of (-)-triptonide is accomplished based on a metal-catalyzed hydrogen atom transfer (MHAT)-initiated radical cyclization. During the optimization of the key step, we discovered that blue LEDs significantly promoted the efficiency of reaction initiated by Co(TPP)-catalyzed MHAT. Further exploration and optimization of this catalytic system led to development of a dehydrogenative MHAT-initiated Giese reaction.
Collapse
Affiliation(s)
- Xianhe Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Nan Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
20
|
Moreira LMG, Junker J. Sampling CASE Application for the Quality Control of Published Natural Product Structures. Molecules 2021; 26:molecules26247543. [PMID: 34946623 PMCID: PMC8708086 DOI: 10.3390/molecules26247543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Structure elucidation with NMR correlation data is dicey, as there is no way to tell how ambiguous the data set is and how reliably it will define a constitution. Many different software tools for computer assisted structure elucidation (CASE) have become available over the past decades, all of which could ensure a better quality of the elucidation process, but their use is still not common. Since 2011, WebCocon has integrated the possibility to generate theoretical NMR correlation data, starting from an existing structural proposal, allowing this theoretical data then to be used for CASE. Now, WebCocon can also read the recently presented NMReDATA format, allowing for uncomplicated access to CASE with experimental data. With these capabilities, WebCocon presents itself as an easily accessible Web-Tool for the quality control of proposed new natural products. Results of this application to several molecules from literature are shown and demonstrate how CASE can contribute to improve the reliability of Structure elucidation with NMR correlation data.
Collapse
|
21
|
Shi S, Salahi F, Vibbert HB, Rahman M, Snyder SA, Norton JR. Generation of α‐Boryl Radicals by H
.
Transfer and their Use in Cycloisomerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shicheng Shi
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Farbod Salahi
- Department of Chemistry University of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Hunter B. Vibbert
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Maleeha Rahman
- Department of Chemistry Barnard College 3009 Broadway New York NY 10027 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 South Ellis Avenue Chicago IL 60637 USA
| | - Jack R. Norton
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
22
|
Shi S, Salahi F, Vibbert HB, Rahman M, Snyder SA, Norton JR. Generation of α-Boryl Radicals by H . Transfer and their Use in Cycloisomerizations. Angew Chem Int Ed Engl 2021; 60:22678-22682. [PMID: 34405506 PMCID: PMC8582025 DOI: 10.1002/anie.202107665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 02/03/2023]
Abstract
Carbon-centered radicals can be stabilized by delocalization of their spin density into the vacant p orbital of a boron substituent. α-Vinyl boronates, in particular pinacol (Bpin) derivatives, are excellent hydrogen atom acceptors. Under H2 , in the presence of a cobaloxime catalyst, they generate α-boryl radicals; these species can undergo 5-exo radical cyclizations if appropriate double bond acceptors are present, leading to densely functionalized heterocycles with tertiary substituents on Bpin. The reaction shows good functional group tolerance with wide scope, and the resulting boronate products can be converted into other useful functionalities.
Collapse
Affiliation(s)
- Shicheng Shi
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| | - Farbod Salahi
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Hunter B. Vibbert
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| | - Maleeha Rahman
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Jack R. Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027
| |
Collapse
|
23
|
Sohail M, Tanaka F. Dynamic Kinetic Asymmetric Transformation of Racemic Diastereomers: Diastereo- and Enantioconvergent Michael-Henry Reactions to Afford Spirooxindoles Bearing Furan-Fused Rings. Angew Chem Int Ed Engl 2021; 60:21256-21260. [PMID: 34236757 DOI: 10.1002/anie.202108734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 01/02/2023]
Abstract
Dynamic kinetic asymmetric transformation (DYKAT) reactions of racemic diastereomer mixtures that afford the products as essentially single diastereomers with high enantioselectivities are described. We demonstrated the DYKAT in the diastereo- and enantioselective synthesis of spirooxindoles bearing furan-fused rings. The starting materials of the DYKAT, dihydrobenzofuranone derivatives, were synthesized in racemic diastereomer mixtures, and these were transformed to the spirooxindole derivatives in high yields with high diastereo- and enantioselectivities through Michael-Henry cascade reactions with nitrostyrenes under organocatalytic conditions. In the reactions, regardless the stereochemistry of the starting materials, all the four isomers were transformed to single diastereomers with high enantioselectivities, and four new chiral centers were created.
Collapse
Affiliation(s)
- Muhammad Sohail
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
24
|
Sohail M, Tanaka F. Dynamic Kinetic Asymmetric Transformation of Racemic Diastereomers: Diastereo‐ and Enantioconvergent Michael–Henry Reactions to Afford Spirooxindoles Bearing Furan‐Fused Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muhammad Sohail
- Chemistry and Chemical Bioengineering Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
25
|
Gao Z, Ren L, Wang R, Shi L, Wang Y, Su F, Hao HD. Total Synthesis of (±)-Codonopiloneolignanin A. Org Lett 2021; 23:5684-5688. [PMID: 34251830 DOI: 10.1021/acs.orglett.1c01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An intramolecular formal [3 + 2] cationic cycloaddition between benzylic carbocation and styrene was developed for the total synthesis of codonopiloneolignanin A. Further study shows benzocycloheptene as a good substrate for 1,3-dipolar cycloaddition, and a model study toward cephalocyclidine A skeleton was reported.
Collapse
Affiliation(s)
- Zhiyu Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruizhi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhai Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi China
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
26
|
Yu K, Yao F, Zeng Q, Xie H, Ding H. Asymmetric Total Syntheses of (+)-Davisinol and (+)-18-Benzoyldavisinol: A HAT-Initiated Transannular Redox Radical Approach. J Am Chem Soc 2021; 143:10576-10581. [PMID: 34240855 DOI: 10.1021/jacs.1c05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first and asymmetric total syntheses of two C11-oxygenated hetisine-type diterpenoid alkaloids, namely, (+)-davisinol and (+)-18-benzoyldavisinol, is described. The concise synthetic approach features a HAT-initiated transannular redox radical cyclization, an ODI-Diels-Alder cycloaddition, and an acylative kinetic resolution. By incorporating an efficient late-stage assembly of the azabicycle, our strategy would streamline the synthetic design of C20-diterpenoid alkaloids and pave the way for their modular syntheses.
Collapse
Affiliation(s)
- Kuan Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qingrui Zeng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Pultar F, Hansen ME, Wolfrum S, Böselt L, Fróis-Martins R, Bloch S, Kravina AG, Pehlivanoglu D, Schäffer C, LeibundGut-Landmann S, Riniker S, Carreira EM. Mutanobactin D from the Human Microbiome: Total Synthesis, Configurational Assignment, and Biological Evaluation. J Am Chem Soc 2021; 143:10389-10402. [PMID: 34212720 DOI: 10.1021/jacs.1c04825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutanobactin D is a non-ribosomal, cyclic peptide isolated from Streptococcus mutans and shows activity reducing yeast-to-hyphae transition as well as biofilm formation of the pathogenic yeast Candida albicans. We report the first total synthesis of this natural product, which relies on enantioselective, zinc-mediated 1,3-dipolar cycloaddition and a sequence of cascading reactions, providing the key lipidated γ-amino acid found in mutanobactin D. The synthesis enables configurational assignment, determination of the dominant solution-state structure, and studies to assess the stability of the lipopeptide substructure found in the natural product. The information stored in the fingerprint region of the IR spectra in combination with quantum chemical calculations proved key to distinguishing between epimers of the α-substituted β-keto amide. Synthetic mutanobactin D drives discovery and analysis of its effect on growth of other members of the human oral consortium. Our results showcase how total synthesis is central for elucidating the complex network of interspecies communications of human colonizers.
Collapse
Affiliation(s)
- Felix Pultar
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Moritz E Hansen
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lennard Böselt
- Laboratorium für Physikalische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susanne Bloch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Alberto G Kravina
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Deren Pehlivanoglu
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland.,Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
28
|
Akai S, Hori S, Ishida S, Itoh G, Sugiyama K, Yuki C, Egi M, Yahata K, Ikawa T. Synthetic Studies on the Viridin Skeleton through Regio- and Stereoselective Functionalization of the AE-Ring Moiety. Synlett 2021. [DOI: 10.1055/a-1527-3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract4,5,6,7-Tetrahydroisobenzofurans, corresponding to the AC(D)E ring structure of viridin and equipped with required substituents on the A-ring, were synthesized with high regio- and stereoselectivities via the Diels–Alder adduct of a furan derivative and maleic anhydride. The key steps of this work include the regioselective opening of a tetrahydrofuran ring, a stereoselective epoxidation, and an AlMe3-mediated regioselective epoxide opening followed by stereoselective C-methylation.
Collapse
Affiliation(s)
- Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shuhei Hori
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Sho Ishida
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Go Itoh
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Koji Sugiyama
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Chiharu Yuki
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masahiro Egi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | - Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takashi Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
29
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021; 60:12807-12812. [PMID: 33822444 DOI: 10.1002/anie.202102643] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/26/2021] [Indexed: 11/08/2022]
Abstract
We report herein the asymmetric total synthesis of norzoanthamine using radical reactions as key steps for rapid access to the congested carbocyclic core, which is the major synthetic challenge for most zoanthamine alkaloids. (1) The Ueno-Stork radical cyclization was applied to construct the adjacent quaternary centers at the C-9 and C-22 positions; (2) a Co-catalyzed HAT radical reaction was successfully applied to construct the quaternary center at C-12 via Csp3 -Csp2 bond formation; (3) a Mn-catalyzed HAT radical reaction was used to stereospecifically reduce the tetra-substituted olefin (C13=C18) and install the contiguous stereocenters in proximity to the quaternary center. A one-pot bio-inspired cyclization step was finally applied to forge the unstable bis-amino acetal skeleton. Our approach can precisely control the stereochemistry of seven vicinal stereocenters and effectively construct the highly congested heptacyclic skeleton.
Collapse
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
30
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
31
|
Ning SS, Meng D, Zhang JY, Liu SL, Zhou NN, Jin X, Zhu HT. Metal-Free Intramolecular [3+2] Cycloaddition of γ-Hydroxy Acetylenic Ketones with Alkynes for the Synthesis of Naphtho[1,2- c]furan-5-ones and Its Derivatization via a Selective C(sp 2)-H Deuteration Reaction. J Org Chem 2021; 86:7347-7358. [PMID: 34032437 DOI: 10.1021/acs.joc.1c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metal-free intramolecular [3+2] cycloaddtion has been achieved by treating benzene-linked propynol-ynes with AcOH/H2O in a one-pot manner. The reaction provides greener, 100% atom-economic, highly regioselective, and more practical access to functionalized naphtho[1,2-c]furan-5-ones with valuable and versatile applications. The regioselective α-deuteration of naphtho[1,2-c]furan-5-ones has been also presented with excellent deuterium incorporation and chemical yields. Moreover, the fluorescent properties of naphtho[1,2-c]furan-5-one products have been investigated in solution.
Collapse
Affiliation(s)
- Si-Si Ning
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Dan Meng
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jie-Yun Zhang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Shi-Lei Liu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Ni-Ni Zhou
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
32
|
Pakora GA, Mann S, Kone D, Buisson D. Bioconversion of antifungal viridin to phytotoxin viridiol by environmental non-viridin producing microorganisms. Bioorg Chem 2021; 112:104959. [PMID: 33971564 DOI: 10.1016/j.bioorg.2021.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation of viridin, an antifungal produced by biocontrol agent, with non-viridin producing microorganisms is studied. The results show that some environmental non-targeted microorganisms are able to reduce it in the known phytotoxin viridiol, and its 3-epimer. Consequently, this reduction, which happens in some cases by detoxification mechanism, could be disastrous for the plant in a biocontrol of plant disease. However, a process fermentation/biotransformation could be an efficient approach for the preparation of this phytotoxin.
Collapse
Affiliation(s)
- Gilles-Alex Pakora
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France; Laboratoire de Pharmacodynamie Biochimique, UFR Biosciences, Université Félix Houphouët Boigny d'Abidjan (UFHB), 22 BP 582 Abidjan 22, Cote d'Ivoire.
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France
| | - Daouda Kone
- Laboratory Laboratoire de Physiologie Végétale, UFR Biosciences, Université Félix Houphouët-Boigny d'Abidjan (UFHB), 22 BP 582 Abidjan 22, Cote d'Ivoire
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France.
| |
Collapse
|
33
|
Wipf P, Nguyen TT. Intramolecular Diels–Alder Reactions of Oxazoles, Imidazoles, and Thiazoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe development of the intramolecular Diels–Alder cycloaddition of azole heterocycles, i.e. oxazoles (IMDAO), imidazoles (IMDAI), and thiazoles (IMDAT), has had a significant impact on the efficient preparation of heterocyclic intermediates and natural products. In particular, highly efficient and versatile IMDAO reactions have been utilized as a key step in several synthetic schemes to provide alkaloids and terpenoid target molecules. More limited studies have been performed on IMDAI and IMDAT cycloadditions. Some drawbacks, such as the occasionally challenging preparation of IMDA precursors, are also highlighted in this review. Perspectives are provided on how IMDAI and IMDAT transformations can be further expanded for target-directed syntheses.1 Introduction2 Oxazoles2.1 IMDAO Approaches to Furanosesquiterpenes and Furanosteroids2.1.1 Syntheses of Highly Oxygenated Sesquiterpenes2.1.2 Syntheses of (±)-Gnididione and (±)-Isognididione2.1.3 Synthesis of (±)-Stemoamide2.1.4 Synthesis of (±)-Paniculide A2.1.5 Syntheses of (+)- and (–)-Norsecurinine2.1.6 Synthesis of Evodone2.1.7 Syntheses of (±)-Ligularone and (±)-Petasalbine2.1.8 Syntheses of Imerubrine, Isoimerubrine, and Grandirubrine2.1.9 Syntheses of Furanosteroids2.1.10 Syntheses of Substituted Indolines and Tetrahydroquinolines2.2 IMDAO Approaches to Pyridines: the Kondrat’eva Reaction2.2.1 Syntheses of Suaveoline and Norsuaveoline2.2.2 Synthesis of Eupolauramine2.2.3 Syntheses of (–)-Plectrodorine and (+)-Oxerine2.2.4 Synthesis of Amphimedine2.2.5 Synthetic Approach to the Western Segment of Haplophytine2.2.6 Synthesis of Marinoquinoline A2.2.6.1 IMDAO Approach to Marinoquinoline A2.2.6.2 Scope of Allenyl IMDAO Cycloaddition2.3 Lewis Acid Catalysis in IMDAO Reactions2.3.1 Effects of Europium Catalysts on IMDAO Reactions2.3.2 Effects of Copper Catalysts on IMDAO Reactions3 Imidazoles
4 Thiazoles4.1 Syntheses of Menthane and Eremophilane4.2 Further Comments on the Intramolecular Cycloadditions of Thiocarbonyl Ylides5 Conclusions and Outlook
Collapse
Affiliation(s)
- Peter Wipf
- Department of Chemistry, University of Pittsburgh
- Department of Pharmaceutical Sciences, University of Pittsburgh
| | | |
Collapse
|
34
|
Xue D, He H, Gao S. Strategies for the Total Synthesis of the Furanosteroids: wortmannin and viridin. CHEM LETT 2021. [DOI: 10.1246/cl.200841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Dongsheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
35
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021; 60:5512-5518. [PMID: 33206427 DOI: 10.1002/anie.202013881] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/11/2022]
Abstract
We describe herein the assembly of the cis-decalin framework through radical cyclization initiated by metal-catalyzed hydrogen atom transfer (MHAT), further applied it in the asymmetric synthesis of dankasterones A and B and periconiastone A. Position-selective C-H oxygenation allowed for installation of the necessary functionality. A radical rearrangement was adopted to create 13(14→8)abeo-8-ergostane skeleton. Interconversion of dankasterone B and periconiastone A was realized through biomimetic intramolecular aldol and retro-aldol reactions. The MHAT-based approach, serves as a new dissection means, is complementary to the conventional ways to establish cis-decalin framework.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
36
|
Lu XL, Qiu Y, Yang B, He H, Gao S. Asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B. Chem Sci 2021; 12:4747-4752. [PMID: 34168753 PMCID: PMC8179641 DOI: 10.1039/d0sc07089k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6-7 steps using an easily accessible meso-cyclohexadienone derivative. The [6,6]-bicyclic decalin B-C ring and the all-carbon quaternary stereocenter at C-6 were prepared via a desymmetric intramolecular Michael reaction with up to 97% ee. The naphthalene diol D-E ring was constructed through a sequence of Ti(Oi-Pr)4-promoted photoenolization/Diels-Alder, dehydration, and aromatization reactions. This asymmetric strategy provides a scalable route to prepare target molecules and their derivatives for further biological studies.
Collapse
Affiliation(s)
- Xiao-Long Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yuanyou Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| |
Collapse
|
37
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
38
|
Senapati BK. Recent progress in the synthesis of the furanosteroid family of natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01454k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on an overview of recent advances in the synthesis of furanosteroids and illustrates their applications in medicinal chemistry over the period of 2005–present.
Collapse
|
39
|
Xie Y, Huang W, Qin S, Fu S, Liu B. Catalytic radical cascade cyclization of alkene-tethered enones to fused bicyclic cyclopropanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01312b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused bicyclic cyclopropanols were achieved via an unprecedented HAT-triggered radical cascade reaction of alkene-tethered enones in the presence of an iron catalyst.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Wei Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
40
|
Nishino H, Oka S, Hashimoto S, Hisano K. Facile Access to Highly-Substituted Dihydrofurans Using Resonated Vinylpentanedione Radicals Generated by Mn(III)-Based Oxidation. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Wu J, Ma Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo01139a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Functionalization of olefins has been an important transformation in synthetic chemistry. This review will focus on the natural product synthesis employing the MHAT reaction as the key strategy.
Collapse
Affiliation(s)
- Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| |
Collapse
|
42
|
Ma L, Kou L, Jin F, Cheng X, Tao S, Jiang G, Bao X, Wan X. Acyclic nitronate olefin cycloaddition (ANOC): regio- and stereospecific synthesis of isoxazolines. Chem Sci 2020; 12:774-779. [PMID: 34163811 PMCID: PMC8178991 DOI: 10.1039/d0sc05607c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
We report the first demonstrations of intra- and intermolecular acyclic nitronate olefin cycloaddition (ANOC) reactions that enable the highly efficient syntheses of isoxazolines bearing various functional groups. This general approach to accessing γ-lactone fused isoxazolines was hitherto unprecedented. The room temperature transformations reported herein exhibit wide substrate scopes, as evidenced by more than 70 examples, including the generation of five tricyclic isoxazolines. The robustness of this methodology was confirmed by a series of trials that afforded highly functionalized isoxazolines. Both experimental results and density functional theory calculations indicate that these transformations proceed via the in situ formation of acyclic nitronates together with concerted [3+2] cycloaddition and tert-butyloxy group elimination processes to give regio- and stereospecificity.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Luyao Kou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
43
|
Abstract
Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene-(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki-Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (-)-daphnezomines A and B in 14 steps.
Collapse
Affiliation(s)
- Guangpeng Xu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yunan Lu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
Hu Y, Bai M, Yang Y, Tian J, Zhou Q. Rapid Access to Tetracyclic Core of Wortmannin via an Intramolecular Reductive Olefin Coupling Strategy. Org Lett 2020; 22:6308-6312. [PMID: 32806191 DOI: 10.1021/acs.orglett.0c02135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A convergent approach to assemble the fused BCDE tetracyclic framework of wortmannin is presented. This route features a very challenging Suzuki-Miyaura coupling to prepare the fully functionalized furan intermediate, a Negishi-type acylation to unite the two enantio-enriched fragments, and a subsequent hydrogen-atom-transfer-initiated 6-endo radical cyclization to install the central cyclohexadienone moiety, which establishes the C10 all-carbon quaternary stereocenter.
Collapse
|
45
|
Abstract
We have found that terminal N-vinylindoles bearing cycloalkanone substituents are excellent hydrogen atom acceptors, generating α-aminyl radicals with a variety of catalysts (Co(II)/H2 or Co(III)Cl precatalysts with silane reductants). These radicals can be converted to internal vinylindoles but eventually add to the oxygen of the cycloalkanone substituents. These cyclizations eventually furnish a densely functionalized dihydrofuran (a net cycloisomerization). The internal vinylindoles are slowly converted to the dihydrofurans, but the final cycloisomerization/isomerization ratio is affected by the size of the cycloalkanone ring (seven- and eight-membered rings give the highest ratio). These results demonstrate how HAT can isomerize substrates in nonintuitive ways, here leading to the first HAT-promoted formation of a C-O bond.
Collapse
Affiliation(s)
- Shicheng Shi
- Department of Chemistry, Columbia University, 3000 Broadway, New York New York, 10027, United States
| | - Jonathan L Kuo
- Department of Chemistry, Columbia University, 3000 Broadway, New York New York, 10027, United States
| | - Tao Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York New York, 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York New York, 10027, United States
| |
Collapse
|
46
|
Breugst M, Reissig H. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew Chem Int Ed Engl 2020; 59:12293-12307. [PMID: 32255543 PMCID: PMC7383714 DOI: 10.1002/anie.202003115] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 12/21/2022]
Abstract
The concept of 1,3-dipolar cycloadditions was presented by Rolf Huisgen 60 years ago. Previously unknown reactive intermediates, for example azomethine ylides, were introduced to organic chemistry and the (3+2) cycloadditions of 1,3-dipoles to multiple-bond systems (Huisgen reaction) developed into one of the most versatile synthetic methods in heterocyclic chemistry. In this Review, we present the history of this research area, highlight important older reports, and describe the evolution and further development of the concept. The most important mechanistic and synthetic results are discussed. Quantum-mechanical calculations support the concerted mechanism always favored by R. Huisgen; however, in extreme cases intermediates may be involved. The impact of 1,3-dipolar cycloadditions on the click chemistry concept of K. B. Sharpless will also be discussed.
Collapse
Affiliation(s)
- Martin Breugst
- Department für ChemieUniversität zu KölnGreinstrasse 450939KölnGermany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
47
|
Breugst M, Reißig H. Die Huisgen‐Reaktion: Meilensteine der 1,3‐dipolaren Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003115] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Hans‐Ulrich Reißig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustr. 3 14195 Berlin Deutschland
| |
Collapse
|
48
|
Bioactive Metabolites from the Mariana Trench Sediment-Derived Fungus Penicillium sp. SY2107. Mar Drugs 2020; 18:md18050258. [PMID: 32423167 PMCID: PMC7281598 DOI: 10.3390/md18050258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Mariana Trench sediments are enriched in microorganisms, however, the structures and bioactivities of their secondary metabolites are not very known. In this study, a fungus Penicillium sp. SY2107 was isolated from a sample of Mariana Trench sediment collected at a depth of 11000 m and an extract prepared from the culture of this fungus in rice medium showed antimicrobial activities. Chemical investigation on this active extract led to the isolation of 16 compounds, including one novel meroterpenoid, named andrastone C. Structure of the new compound was elucidated based on high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, extensive nuclear magnetic resonance (NMR) spectroscopic analyses and a single crystal X-ray diffraction. The crystal structure of a known meroterpenoid andrastone B was also reported in this study. Both andrastones B and C exhibited antimicrobial activities against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans with minimum inhibitory concentration (MIC) values in a range from 6 to 13 g/mL.
Collapse
|
49
|
Vrubliauskas D, Vanderwal CD. Cobalt-Catalyzed Hydrogen-Atom Transfer Induces Bicyclizations that Tolerate Electron-Rich and Electron-Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020; 59:6115-6121. [PMID: 31991035 PMCID: PMC7124983 DOI: 10.1002/anie.202000252] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/12/2022]
Abstract
A novel CoII -catalyzed polyene cyclization was developed that is uniquely effective when performed in hexafluoroisopropanol as the solvent. The process is presumably initiated by metal-catalyzed hydrogen-atom transfer (MHAT) to 1,1-disubstituted or monosubstituted alkenes, and the reaction is remarkable for its tolerance of internal alkenes bearing either electron-rich methyl or electron-deficient nitrile substituents. Electron-rich aromatic terminators are required in both cases. Terpenoid scaffolds with different substitution patterns are obtained with excellent diastereoselectivities, and the bioactive C20-oxidized abietane diterpenoid carnosaldehyde was made to showcase the utility of the nitrile-bearing products. Also provided are the results of several mechanistic experiments that suggest the process features an MHAT-induced radical bicyclization with late-stage oxidation to regenerate the aromatic terminator.
Collapse
Affiliation(s)
- Darius Vrubliauskas
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | | |
Collapse
|
50
|
Vrubliauskas D, Vanderwal CD. Cobalt‐Catalyzed Hydrogen‐Atom Transfer Induces Bicyclizations that Tolerate Electron‐Rich and Electron‐Deficient Intermediate Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|