1
|
Watson EE. Strategies for the optimisation of troublesome peptide nucleic acid (PNA) sequences. Org Biomol Chem 2025. [PMID: 40391425 DOI: 10.1039/d5ob00589b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Through the use of a pseudo-peptidic backbone, peptide nucleic acids (PNA) mimic the functionality of native nucleic acids while enjoying improved binding affinity and metabolic stability. However, many aspects of the application of PNA to biological and medicinal settings still requires sequence specific optimisation. This review highlights key areas for refinement, including synthesis, tuning of physical properties, cell permeability and analysis, including common strategies for the pracitioner to apply in each area.
Collapse
Affiliation(s)
- Emma E Watson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Zhang M, Deng Y, Zhou Q, Gao J, Zhang D, Pan X. Advancing micro-nano supramolecular assembly mechanisms of natural organic matter by machine learning for unveiling environmental geochemical processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:24-45. [PMID: 39745028 DOI: 10.1039/d4em00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting the processes, structures and environmental effects of NOM self-assembly. This review seeks to provide a tutorial-like compilation of data source determination, algorithm selection, model construction, interpretability analyses, applications and challenges for big-data-based ML aiming at elucidating NOM self-assembly mechanisms in environments. The results from advanced nano-submicron-scale spatial chemical analytical technologies are suggested as input data which provide the combined information of molecular interactions and structural visualization. The existing ML algorithms need to handle multi-scale and multi-modal data, necessitating the development of new algorithmic frameworks. Interpretable supervised models are crucial owing to their strong capacity of quantifying the structure-property-effect relationships and bridging the gap between simply data-driven ML and complicated NOM assembly practice. Then, the necessity and challenges are discussed and emphasized on adopting ML to understand the geochemical behaviors and bioavailability of pollutants as well as the elemental cycling processes in environments resulting from the NOM self-assembly patterns. Finally, a research framework integrating ML, experiments and theoretical simulation is proposed for comprehensively and efficiently understanding the NOM self-assembly-involved environmental issues.
Collapse
Affiliation(s)
- Ming Zhang
- College of Geoinformatics, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yihui Deng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| | - Jing Gao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Daoyong Zhang
- College of Geoinformatics, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
3
|
Pei ZF, Vior NM, Zhu L, Truman AW, Nair SK. Biosynthesis of peptide-nucleobase hybrids in ribosomal peptides. Nat Chem Biol 2025; 21:143-154. [PMID: 39285006 PMCID: PMC11912545 DOI: 10.1038/s41589-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/20/2024] [Indexed: 12/25/2024]
Abstract
The main biopolymers in nature are oligonucleotides and polypeptides. However, naturally occurring peptide-nucleobase hybrids are rare. Here we report the characterization of the founding member of a class of peptide-nucleobase hybrid natural products with a pyrimidone motif from a widely distributed ribosomally synthesized and post-translationally modified (RiPP) biosynthetic pathway. This pathway features two steps where a heteromeric RRE-YcaO-dehydrogenase complex catalyzes the formation of a six-membered pyrimidone ring from an asparagine residue on the precursor peptide, and an acyl esterase selectively recognizes this moiety to cleave the C-terminal follower peptide. Mechanistic studies reveal that the pyrimidone formation occurs in a substrate-assisted catalysis manner, requiring a His residue in the precursor to activate asparagine for heterocyclization. Our study expands the chemotypes of RiPP natural products and the catalytic scope of YcaO enzymes. This discovery opens avenues to create artificial biohybrid molecules that resemble both peptide and nucleobase, a modality of growing interest.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
More SH, Schmutz M, Jierry L, Ganesh KN. Supramolecular multiplexes from collagen mimetic peptide-PNA(GGG) 3 conjugates and C-rich DNA: pH-induced reversible switching from triplex-duplex to triplex- i-motif. Biomater Sci 2024; 13:261-274. [PMID: 39539132 DOI: 10.1039/d4bm00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides are well known for forming nanoparticles, while DNA duplexes, triplexes and tetraplexes create rigid nanostructures. Accordingly, the covalent conjugation of peptides to DNA/RNA produces hybrid self-assembling features and may lead to interesting nano-assemblies distinct from those of their individual components. Herein, we report the preparation of a collagen mimetic peptide incorporating lysine in its backbone, with alkylamino side chains radially conjugated with G-rich PNA [collagen-(PNA-GGG)3]. In the presence of complementary C-rich DNA (dCCCTTTCCC) at neutral pH, the collagen mimetic triplexes were interconnected by PNA-GGG : DNA-CCC duplexes, leading to the formation of larger assemblies of nanostructures. Upon decreasing the pH to 4.5, the dissociation of the triplex-duplex assembly released the protonated C-rich DNA, which immediately folded into an i-motif. With an increase in the pH to 7.2 (neutral), the i-motif unfolded into linear DNA, which reformed the PNA-GGG : DNA-CCC duplex interconnecting the collagen triplexes. The pH-induced switching of the assembly and disassembly was reversible over a few cycles. The hybrid collagen-(PNAGGG)3 : DNA-C3T3C3 triplex-duplex and the individual components of the assembly including the i-motif were characterized by UV and CD melting, fluorescence, TEM and gel electrophoresis. The pH-induced reversible switching was established by the changes in the CD and fluorescence properties. Peptide-DNA conjugates have wide applications in both biology and materials science, ranging from therapeutics and drug delivery to diagnostics and molecular switches. Thus, the prototype ensemble of the triplex peptide-PNA conjugate and its duplex with DNA described herein has potential for elaboration into rationally designed systems by varying the PNA/DNA sequences to trap functional ligands/drugs for release in pH-controlled environments.
Collapse
Affiliation(s)
- Shahaji H More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| |
Collapse
|
5
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
D’Andrea LD, Romanelli A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. Int J Mol Sci 2024; 25:12435. [PMID: 39596501 PMCID: PMC11594392 DOI: 10.3390/ijms252212435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Obtaining new materials by exploiting the self-assembly of biomolecules is a very challenging field. In recent years, short peptides and nucleic acids have been used as scaffolds to produce supramolecular structures for different applications in the biomedical and technological fields. In this review, we will focus on the self-assembly of peptide nucleic acids (PNAs), their conjugates with peptides, or other molecules. We will describe the physical properties of the assembled systems and, where described, the application they were designed for.
Collapse
Affiliation(s)
- Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, via M. Bianco 9, 20131 Milano, Italy;
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Venezian 21, 20133 Milan, Italy
| |
Collapse
|
7
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Xiang Z, Lu J, Ming Y, Guo W, Chen X, Sun W. Engineering of a DNA/γPNA Hybrid Nanoreporter for ctDNA Mutation Detection via γPNA Urinalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310225. [PMID: 38958527 PMCID: PMC11434236 DOI: 10.1002/advs.202310225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Detection of circulating tumor DNA (ctDNA) mutations, which are molecular biomarkers present in bodily fluids of cancer patients, can be applied for tumor diagnosis and prognosis monitoring. However, current profiling of ctDNA mutations relies primarily on polymerase chain reaction (PCR) and DNA sequencing and these techniques require preanalytical processing of blood samples, which are time-consuming, expensive, and tedious procedures that increase the risk of sample contamination. To overcome these limitations, here the engineering of a DNA/γPNA (gamma peptide nucleic acid) hybrid nanoreporter is disclosed for ctDNA biosensing via in situ profiling and recording of tumor-specific DNA mutations. The low tolerance of γPNA to single mismatch in base pairing with DNA allows highly selective recognition and recording of ctDNA mutations in peripheral blood. Owing to their remarkable biostability, the detached γPNA strands triggered by mutant ctDNA will be enriched in kidneys and cleared into urine for urinalysis. It is demonstrated that the nanoreporter has high specificity for ctDNA mutation in peripheral blood, and urinalysis of cleared γPNA can provide valuable information for tumor progression and prognosis evaluation. This work demonstrates the potential of the nanoreporter for urinary monitoring of tumor and patient prognosis through in situ biosensing of ctDNA mutations.
Collapse
Affiliation(s)
- Zhichu Xiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jianhua Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Ming
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, The State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
9
|
Todkari IA, Chaudhary P, Kulkarni MJ, Ganesh KN. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Org Biomol Chem 2024; 22:6810-6821. [PMID: 39113548 DOI: 10.1039/d4ob00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nucleic acids (DNA and RNA) can form diverse secondary structures ranging from hairpins to duplex, triplex, G4-tetraplex and C4-i-motifs. Many of the DNA analogues designed as antisense oligonucleotides (ASO) are also adept at embracing such folded structures, although to different extents with altered stabilities. One such analogue, peptide nucleic acid (PNA), which is uncharged and achiral, forms hybrids with complementary DNA/RNA with greater stability and specificity than DNA:DNA/RNA hybrids. Like DNAs, these single-stranded PNAs can form PNA:DNA/RNA duplexes, PNA:DNA:PNA triplexes, PNA-G4 tetraplexes and PNA-C4-i-motifs. We have recently designed Janus-like bimodal PNAs endowed with two different nucleobase sequences on either side of a single aminoethylglycyl (aeg) PNA backbone and shown that these can simultaneously bind to two complementary DNA sequences from both faces of PNA. This leads to the formation of supramolecular polyplexes such as double duplexes, triple duplexes and triplexes of double duplexes with appropriate complementary DNA/RNA. Herein, we demonstrate that Janus/bimodal PNA with a poly G-sequence on the triazole side of the PNA backbone and mixed bases on the t-amide side, templates the initial formation of a (PNA-G5)4 tetraplex (triazole side), followed by the formation of a PNA:DNA duplex (t-amide side). Such a polyplex shows synergistic overall stabilisation compared to the isolated duplexes/quadruplex. The assembly of polyplexes with a shared backbone for duplexes and tetraplexes is programmable and may have potential applications in the self-assembly of nucleic acid nano- and origami structures. It is also shown that Janus PNAs enter the cells better than the standard aeg-PNA oligomers, and hence have implications for in vivo applications as well.
Collapse
Affiliation(s)
- Iranna Annappa Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Preeti Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | - Mahesh J Kulkarni
- Division of Biochemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India
| |
Collapse
|
10
|
Sarkar S. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Biopolymers 2024; 115:e23567. [PMID: 37792292 DOI: 10.1002/bip.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.
Collapse
Affiliation(s)
- Srijani Sarkar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
11
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Sakar S, Anderson CF, Schneider JP. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angew Chem Int Ed Engl 2024; 63:e202313507. [PMID: 38057633 PMCID: PMC10872331 DOI: 10.1002/anie.202313507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Herein, peptide nucleic acids (PNAs) are employed in the design of a participatory duplex PNA-peptide crosslinking agent. Biophysical and mechanical studies show that crosslinkers present during peptide assembly leading to hydrogelation participate in the formation of fibrils while simultaneously installing crosslinks into the higher-order network that constitutes the peptide gel. The addition of 2 mol % crosslinker into the assembling system results in a ~100 % increase in mechanical stiffness without affecting the rate of peptide assembly or the local morphology of fibrils within the gel network. Stiffness enhancement is realized by only affecting change in the elastic component of the viscoelastic gel. A synthesis of the PNA-peptide duplex crosslinkers is provided that allows facile variation in peptide composition and addresses the notorious hydrophobic content of PNAs. This crosslinking system represents a new tool for modulating the mechanical properties of peptide-based hydrogels.
Collapse
Affiliation(s)
- Srijani Sakar
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Caleb F Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, 376 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Bellavita R, Braccia S, Falanga A, Galdiero S. An Overview of Supramolecular Platforms Boosting Drug Delivery. Bioinorg Chem Appl 2023; 2023:8608428. [PMID: 38028018 PMCID: PMC10661875 DOI: 10.1155/2023/8608428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interactions, hydrogen bonds, and van der Waals interactions. This review describes the main structures and characteristics of several building blocks used to obtain stable, self-assembling nanostructures tailored for numerous biological applications. Owing to their versatility, biocompatibility, and controllability, these nanostructures find application in diverse fields ranging from drug/gene delivery, theranostics, tissue engineering, and nanoelectronics. Herein, we described the different approaches used to design and functionalize these nanomaterials to obtain selective drug delivery in a specific disease. In particular, the review highlights the efficiency of these supramolecular structures in applications related to infectious diseases and cancer.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II', Portici 80055, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| |
Collapse
|
14
|
Argueta-Gonzalez H, Swenson CS, Skowron KJ, Heemstra JM. Elucidating Sequence-Assembly Relationships for Bilingual PNA Biopolymers. ACS OMEGA 2023; 8:37442-37450. [PMID: 37841192 PMCID: PMC10569013 DOI: 10.1021/acsomega.3c05528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Nucleic acids and proteins possess encoded "languages" that can be used for information storage or to direct function. However, each biopolymer is limited to encoding its respective "language." Using a peptide nucleic acid (PNA) scaffold, nucleobase and amino acid residues can be installed on a singular backbone, enabling a single biopolymer to encode both languages. Our laboratory previously reported the development of a "bilingual" PNA biopolymer that incorporates a sequence-specific nucleic acid code interspersed with hydrophobic (alanine) and hydrophilic (lysine) amino acid residues at defined positions to produce amphiphilic character. We observed the amphiphilic amino acid residues directing the biopolymer to undergo self-assembly into micelle-like structures, while the nucleic acid recognition was harnessed for disassembly. Herein, we report a series of bilingual PNA sequences having amino acid residues with varying lengths, functional group charges, hydrophobicities, and spacings to elucidate the effect of these parameters on micelle assembly and nucleic acid recognition. Negative charges in the hydrophilic block or increased bulkiness of the hydrophobic side chains led to assembly into similarly sized micelles; however, the negative charge additionally led to increased critical micelle concentration. Upon PNA sequence truncation to decrease the spacing between side chains, the biopolymers remained capable of self-assembling but formed smaller structures. Characterization of disassembly revealed that each variant retained sequence recognition capabilities and stimuli-responsive disassembly. Together, these data show that the amino acid and nucleic acid sequences of amphiphilic bilingual biopolymers can be customized to finely tune the assembly and disassembly properties, which has implications for applications such as the encapsulation and delivery of cargo for therapeutics.
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kornelia J. Skowron
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Mosseri A, Sancho-Albero M, Mercurio FA, Leone M, De Cola L, Romanelli A. Tryptophan-PNA gc Conjugates Self-Assemble to Form Fibers. Bioconjug Chem 2023; 34:1429-1438. [PMID: 37486977 PMCID: PMC10436247 DOI: 10.1021/acs.bioconjchem.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - María Sancho-Albero
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Flavia Anna Mercurio
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Luisa De Cola
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alessandra Romanelli
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
16
|
Sadihov-Hanoch H, Bandela AK, Chotera-Ouda A, Ben David O, Cohen-Luria R, Lynn DG, Ashkenasy G. Dynamic exchange controls the assembly structure of nucleic-acid-peptide chimeras. SOFT MATTER 2023; 19:3940-3945. [PMID: 37211859 DOI: 10.1039/d2sm01528e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent attempts to develop the next generation of functional biomaterials focus on systems chemistry approaches exploiting dynamic networks of hybrid molecules. This task is often found challenging, but we herein present ways for profiting from the multiple interaction interfaces forming Nucleic-acid-Peptide assemblies and tuning their formation. We demonstrate that the formation of well-defined structures by double-stranded DNA-peptide conjugates (dsCon) is restricted to a specific range of environmental conditions and that precise DNA hybridization, satisfying the interaction interfaces, is a crucial factor in this process. We further reveal the impact of external stimuli, such as competing free DNA elements or salt additives, which initiate dynamic interconversions, resulting in hybrid structures exhibiting spherical and fibrillar domains or a mixture of spherical and fibrillar particles. This extensive analysis of the co-assembly systems chemistry offers new insights into prebiotic hybrid assemblies that may now facilitate the design of new functional materials. We discuss the implications of these findings for the emergence of function in synthetic materials and during early chemical evolution.
Collapse
Affiliation(s)
- Hava Sadihov-Hanoch
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Anil Kumar Bandela
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Agata Chotera-Ouda
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Oshrat Ben David
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - David G Lynn
- Departments of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Gonen Ashkenasy
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
17
|
Swenson C, Argueta-Gonzalez HS, Sterling SA, Robichaux R, Knutson SD, Heemstra JM. Forced Intercalation Peptide Nucleic Acid Probes for the Detection of an Adenosine-to-Inosine Modification. ACS OMEGA 2023; 8:238-248. [PMID: 36643573 PMCID: PMC9835161 DOI: 10.1021/acsomega.2c03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The deamination of adenosine to inosine is an important modification in nucleic acids that functionally recodes the identity of the nucleobase to a guanosine. Current methods to analyze and detect this single nucleotide change, such as sequencing and PCR, typically require time-consuming or costly procedures. Alternatively, fluorescent "turn-on" probes that result in signal enhancement in the presence of target are useful tools for real-time detection and monitoring of nucleic acid modification. Here we describe forced-intercalation PNA (FIT-PNA) probes that are designed to bind to inosine-containing nucleic acids and use thiazole orange (TO), 4-dimethylamino-naphthalimide (4DMN), and malachite green (MG) fluorogenic dyes to detect A-to-I editing events. We show that incorporation of the dye as a surrogate base negatively affects the duplex stability but does not abolish binding to targets. We then determined that the identity of the adjacent nucleobase and temperature affect the overall signal and fluorescence enhancement in the presence of inosine, achieving an 11-fold increase, with a limit of detection (LOD) of 30 pM. We determine that TO and 4DMN probes are viable candidates to enable selective inosine detection for biological applications.
Collapse
Affiliation(s)
- Colin
S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Sierra A. Sterling
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan Robichaux
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steve D. Knutson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Kulkarni P, Datta D, Ganesh KN. Gemdimethyl Peptide Nucleic Acids (α/β/γ -gdm-PNA): E/Z-Rotamers Influence the Selectivity in the Formation of Parallel/Antiparallel gdm-PNA:DNA/RNA Duplexes. ACS OMEGA 2022; 7:40558-40568. [PMID: 36385799 PMCID: PMC9647847 DOI: 10.1021/acsomega.2c05873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 05/29/2023]
Abstract
Peptide nucleic acids (PNAs) consist of an aminoethylglycine (aeg) backbone to which the nucleobases are linked through a tertiary amide group and bind to complementary DNA/RNA in a sequence-specific manner. The flexible aeg backbone has been the target for several chemical modifications of the PNA to improve its properties such as specificity, solubility, etc. PNA monomers exhibit a mixture of two rotamers (Z/E) arising from the restricted rotation around the tertiary amide N-CO bond. We have recently demonstrated that achiral gemdimethyl substitution at the α, β, and γ sites on the aeg backbone induces exclusive Z (α-gdm)- or E-rotamer (β-gdm) selectivity at the monomer level. It is now shown that γ/β-gdm-PNA:DNA parallel duplexes are more stable than the analogous antiparallel duplexes, while γ/β-gdm-PNA:RNA antiparallel duplexes are more stable than parallel duplexes. Furthermore, the γ/β-gdm-PNA:RNA duplexes are more stable than the γ/β-gdm-PNA:DNA duplexes. These results with γ/β-gdm-PNA are the reverse of those previously seen with α-gdm-PNA oligomers that stabilized antiparallel α-gdm-PNA:DNA duplexes compared to α-gdm-PNA:RNA duplexes. The stability of antiparallel/parallel PNA:DNA/RNA duplexes is correlated with the preference for Z/E-rotamer selectivity in α/β-gdm-PNA monomers, with Z-rotamers (α-gdm) leading to antiparallel duplexes and E-rotamers (β/γ-gdm) leading to parallel duplexes. The results highlight the role and importance of Z- and E-rotamers in controlling the structural preferences of PNA:DNA/RNA duplexes.
Collapse
Affiliation(s)
- Pradnya Kulkarni
- Chemistry
Department, Indian Institute of Science
Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati517507, India
| | - Dhrubajyoti Datta
- Chemistry
Department, Indian Institute of Science
Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati517507, India
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune411008, India
| |
Collapse
|
19
|
Shiraj A, Ramabhadran RO, Ganesh KN. Aza-PNA: Engineering E-Rotamer Selectivity Directed by Intramolecular H-bonding. Org Lett 2022; 24:7421-7427. [PMID: 36190804 DOI: 10.1021/acs.orglett.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The replacement of α(CH2) by NH in monomers of standard aeg PNA and its homologue β-ala PNA leads to respective aza-PNA monomers (1 and 2) in which the NαH can form either an 8-membered H-bonded ring with folding of the backbone (DMSO and water) or a 5-membered NαH─αCO (water) to stabilize E-type rotamers. Such aza-PNA oligomers with exclusive E rotamers and intraresidue backbone H-bonding can modulate its DNA/RNA binding and assembling properties.
Collapse
Affiliation(s)
- Abdul Shiraj
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.,Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
20
|
Immel JR, Bloom S. carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205606. [PMID: 35507689 PMCID: PMC9256812 DOI: 10.1002/anie.202205606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/14/2022]
Abstract
Exchanging the ribose backbone of an oligonucleotide for a peptide can enhance its physiologic stability and nucleic acid binding affinity. Ordinarily, the eneamino nitrogen atom of a nucleobase is fused to the side chain of a polypeptide through a new C-N bond. The discovery of C-C linked nucleobases in the human transcriptome reveals new opportunities for engineering nucleopeptides that replace the traditional C-N bond with a non-classical C-C bond, liberating a captive nitrogen atom and promoting new hydrogen bonding and π-stacking interactions. We report the first late-stage synthesis of C-C linked carba-nucleopeptides (cNPs) using aqueous Rhodamine B photoredox catalysis. We prepare brand-new cNPs in batch, in parallel, and in flow using three long-wavelength photochemical setups. We detail the mechanism of our reaction by experimental and computational studies and highlight the essential role of diisopropylethylamine as a bifurcated two-electron reductant.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
21
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
22
|
Immel JR, Bloom S. carba
‐Nucleopeptides (
c
NPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacob R. Immel
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
23
|
Todkari I, Gupta MK, Ganesh KN. Silver soldering of PNA:DNA duplexes: assembly of a triple duplex from bimodal PNAs with all-C on one face. Chem Commun (Camb) 2022; 58:4083-4086. [PMID: 35266467 DOI: 10.1039/d1cc07297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA:bm-PNA duplexes endowed with all-C on either the t-amide or triazole face and mixed base sequence on the other face can be welded with silver ions through C:Ag+:C connects to give triple duplexes in one complex. The interplay of WC and Ag+-mediated duplexes leads to synergistic stability effects on both duplexes and the complex.
Collapse
Affiliation(s)
- Iranna Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| |
Collapse
|
24
|
Ranallo S, Sorrentino D, Delibato E, Ercolani G, Plaxco KW, Ricci F. Protein–Protein Communication Mediated by an Antibody‐Responsive DNA Nanodevice**. Angew Chem Int Ed Engl 2022; 61:e202115680. [DOI: 10.1002/anie.202115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Simona Ranallo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Daniela Sorrentino
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità Viale Regina Elena 299 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
25
|
Ranallo S, Sorrentino D, Delibato E, Ercolani G, Plaxco KW, Ricci F. Protein–Protein Communication Mediated by an Antibody‐Responsive DNA Nanodevice**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simona Ranallo
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Daniela Sorrentino
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità Viale Regina Elena 299 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
26
|
Argueta-Gonzalez HS, Swenson CS, Song G, Heemstra JM. Stimuli-responsive assembly of bilingual peptide nucleic acids. RSC Chem Biol 2022; 3:1035-1043. [PMID: 35974999 PMCID: PMC9347363 DOI: 10.1039/d2cb00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acids (PNAs) are high-affinity synthetic nucleic acid analogs capable of hybridization with native nucleic acids. PNAs synthesized having amino acid sidechains installed at the γ-position along the backbone provide a template for a single biopolymer to simultaneously encode nucleic acid and amino acid sequences. Previously, we reported the development of “bilingual” PNAs through the synthesis of an amphiphilic sequence featuring separate blocks of hydrophobic and hydrophilic amino acid functional groups. These PNAs combined the sequence-specific binding activity of nucleic acids with the structural organization properties of peptides. Like other amphiphilic compounds, these γ-PNAs were observed to assemble spontaneously into micelle-like nanostructures in aqueous solutions and disassembly was induced through hybridization to a complementary sequence. Here, we explore whether assembly of these bilingual PNAs is possible by harnessing the nucleic acid code. Specifically, we designed an amphiphile-masking duplex system in which spontaneous amphiphile assembly is prevented through hybridization to a nucleic acid masking sequence. We show that the amphiphile is displaced upon introduction of a releasing sequence complementary to the masking sequence through toehold mediated displacement. Upon release, we observe that the amphiphile proceeds to assemble in a fashion consistent with our previously reported structures. Our approach represents a novel method for controlled stimuli-responsive assembly of PNA-based nanostructures. “Bilingual” biopolymers comprised of γ-modified peptide nucleic acids can harness peptide and nucleic acid codes to direct assembly and recognition. Herein, we demonstrate stimuli-responsive assembly through a toehold-mediated displacement motif.![]()
Collapse
Affiliation(s)
| | - Colin S. Swenson
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| | - George Song
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Diaferia C, Avitabile C, Leone M, Gallo E, Saviano M, Accardo A, Romanelli A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chemistry 2021; 27:14307-14316. [PMID: 34314536 PMCID: PMC8597081 DOI: 10.1002/chem.202102481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Peptides and nucleic acids can self-assemble to give supramolecular structures that find application in different fields, ranging from the delivery of drugs to the obtainment of materials endowed with optical properties. Forces that stabilize the "suprastructures" typically are hydrogen bonds or aromatic interactions; in case of nucleic acids, Watson-Crick pairing drives self-assembly while, in case of peptides, backbone hydrogen bonds and interactions between aromatic side chains trigger the formation of structures, such as nanotubes or ribbons. Molecules containing both aromatic peptides and nucleic acids could in principle exploit different forces to self-assemble. In this work we meant to investigate the self-assembly of mixed systems, with the aim to understand which forces play a major role and determine formation/structure of aggregates. We therefore synthesized conjugates of the peptide FF to the peptide nucleic acid dimer "gc" and characterized their aggregates by different spectroscopic techniques, including NMR, CD and fluorescence.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR)Via Mezzocannone 1680134NaplesItaly
| | | | - Michele Saviano
- Institute of Crystallography (CNR)Via Amendola 12270126BariItaly
| | - Antonella Accardo
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | - Alessandra Romanelli
- Department of Pharmaceutical SciencesUniversity of MilanVia Venezian 2120133MilanItaly
| |
Collapse
|
28
|
Han Y, Zhang Y, Wu S, Jalalah M, Alsareii SA, Yin Y, Harraz FA, Li G. Co-assembly of Peptides and Carbon Nanodots: Sensitive Analysis of Transglutaminase 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36919-36925. [PMID: 34328724 DOI: 10.1021/acsami.1c10326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structures assembled by peptides have attracted great attention due to their unique physicochemical properties. Moreover, the co-assembly of peptides with additional components can endow the structures with extended functions. In this work, we have explored the co-assembly of peptides and carbon nanodots (CNDs) by taking advantage of their non-covalent binding; thus, the obtained structure may show both the recognition capability of peptides and the catalytic activity of CNDs. Therefore, we have further used the assembled structure for the sensitive analysis of transglutaminase 2 with a low detection limit of 0.25 pg/mL. By simply replacing the peptide sequences or the nanomaterials, the strategy proposed in this work can be developed as a universal model to build the co-assemblies of peptides and nanomaterials, thus leading to their broader applications in biological and biomedical research.
Collapse
Affiliation(s)
- Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yichen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
29
|
Swenson CS, Lackey HH, Reece EJ, Harris JM, Heemstra JM, Peterson EM. Evaluating the effect of ionic strength on PNA:DNA duplex formation kinetics. RSC Chem Biol 2021; 2:1249-1256. [PMID: 34458838 PMCID: PMC8341200 DOI: 10.1039/d1cb00025j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid (PNA) is a unique synthetic nucleic acid analog that has been adopted for use in many biological applications. These applications rely upon the robust Franklin-Watson-Crick base pairing provided by PNA, particularly at lower ionic strengths. However, our understanding of the relationship between the kinetics of PNA:DNA hybridization and ionic strength is incomplete. Here we measured the kinetics of association and dissociation of PNA with DNA across a range of ionic strengths and temperatures at single-molecule resolution using total internal reflection fluorescence imaging. Unlike DNA:DNA duplexes, PNA:DNA duplexes are more stable at lower ionic strength, and we demonstrate that this is due to a higher association rate. While the dissociation rate of PNA:DNA duplexes is largely insensitive to ionic strength, it is significantly lower than that of DNA:DNA duplexes having the same number and sequence of base pairing interactions. The temperature dependence of PNA:DNA kinetic rate constants indicate a significant enthalpy barrier to duplex dissociation, and to a lesser extent, duplex formation. This investigation into the kinetics of PNA:DNA hybridization provides a framework towards better understanding and design of PNA sequences for future applications.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Hershel H Lackey
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Eric J Reece
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Joel M Harris
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | | | - Eric M Peterson
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| |
Collapse
|
30
|
Shi H, Kasparkova J, Soulié C, Clarkson GJ, Imberti C, Novakova O, Paterson MJ, Brabec V, Sadler PJ. DNA-Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry 2021; 27:10711-10716. [PMID: 34046954 PMCID: PMC8361943 DOI: 10.1002/chem.202101168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.
Collapse
Affiliation(s)
- Huayun Shi
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Clément Soulié
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Olga Novakova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Martin J. Paterson
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
31
|
McLoughlin NM, Kuepper A, Neubacher S, Grossmann TN. Synergistic DNA- and Protein-Based Recognition Promote an RNA-Templated Bio-orthogonal Reaction. Chemistry 2021; 27:10477-10483. [PMID: 33914384 PMCID: PMC8362040 DOI: 10.1002/chem.202101103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.
Collapse
Affiliation(s)
- Niall M. McLoughlin
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| |
Collapse
|
32
|
Kumar S, Dhami I, Thadke SA, Ly DH, Taylor RE. Rapid self-assembly of γPNA nanofibers at constant temperature. Biopolymers 2021; 112:e23463. [PMID: 34214178 DOI: 10.1002/bip.23463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported that γ-modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self-assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinct γPNA strands, each with a high density of γ-modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA-assisted isothermal growth of γPNA nanofibers, thereby overcoming a key hurdle for future scale-up of applications related to nanofiber growth and micropatterning.
Collapse
Affiliation(s)
- Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Isha Dhami
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Shivaji A Thadke
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Danith H Ly
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
34
|
Kulkarni P, Datta D, Ramabhadran RO, Ganesh K. Gem-dimethyl peptide nucleic acid (α/β/γ- gdm-PNA) monomers: synthesis and the role of gdm-substituents in preferential stabilisation of Z/ E-rotamers. Org Biomol Chem 2021; 19:6534-6545. [PMID: 34259296 DOI: 10.1039/d1ob01097b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flexible backbone of aminoethylglycine (aeg) PNA upon substitution becomes sterically constrained to enable conformational pre-organization for preferential binding to DNA or RNA. The bulky gem-dimethyl (gdm) substituent on carbons adjacent to the t-amide sidechain either at Cα (glycyl) or Cβ/Cγ (aminoethylene) sides may influence the Z/E rotamer ratio arising from a restricted rotation around the t-amide bond. Employing 2D NMR (NOESY), it is shown here that the Cα-gdm-PNA-T monomer exhibits exclusively the Z-rotamer, while the Cβ-gdm-PNA-T monomer shows only the E-rotamer. The unsubstituted aeg-PNA-T and Cγ-gdm-PNA-T monomers display a mixture of Z/E rotamers. The rotamers with t-amide carbonyl pointing towards the gem-dimethyl group always prevailed. The results are supported by computational studies that suggested that the preferred rotamers are the outcome of a net energetic benefit from the stabilising n-π* interactions of carbonyls (amide backbone and t-amide sidechain), and C-HO interactions and the destabilising steric clash of gem-dimethyl groups with the t-amido methylene group. The E-rotamer structure in Cγ-gdm is also characterised by X-ray crystallography. The exclusive E-rotamer for the Cβ-gdm monomer seen in solution here is the first such example among several modified PNA monomers. Since the conformation of the sidechain is important for inducing base stacking and effective base pairing, the exclusive E-rotamer in the Cβ-gdm monomer may have significance in the properties of the derived PNA : DNA/RNA duplexes with all E-rotamers.
Collapse
Affiliation(s)
- Pradnya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Raghunath O Ramabhadran
- Chemistry Department and CAMOST, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| | - Krishna Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India and Chemistry Department and CAMOST, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| |
Collapse
|
35
|
Gupta MK, Madhanagopal BR, Ganesh KN. Peptide Nucleic Acid with Double Face: Homothymine–Homocytosine Bimodal Cα-PNA (bm-Cα-PNA) Forms a Double Duplex of the bm-PNA2:DNA Triplex. J Org Chem 2020; 86:414-428. [DOI: 10.1021/acs.joc.0c02158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Krishna N. Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
36
|
Pomplun S, Gates ZP, Zhang G, Quartararo AJ, Pentelute BL. Discovery of Nucleic Acid Binding Molecules from Combinatorial Biohybrid Nucleobase Peptide Libraries. J Am Chem Soc 2020; 142:19642-19651. [PMID: 33166454 DOI: 10.1021/jacs.0c08964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature has three biopolymers: oligonucleotides, polypeptides, and oligosaccharides. Each biopolymer has independent functions, but when needed, they form mixed assemblies for higher-order purposes, as in the case of ribosomal protein synthesis. Rather than forming large complexes to coordinate the role of different biopolymers, we dovetail protein amino acids and nucleobases into a single low molecular weight precision polyamide polymer. We established efficient chemical synthesis and de novo sequencing procedures and prepared combinatorial libraries with up to 100 million biohybrid molecules. This biohybrid material has a higher bulk affinity to oligonucleotides than peptides composed exclusively of canonical amino acids. Using affinity selection mass spectrometry, we discovered variants with a high affinity for pre-microRNA hairpins. Our platform points toward the development of high throughput discovery of sequence defined polymers with designer properties, such as oligonucleotide binding.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Genwei Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
37
|
Bhingardeve P, Madhanagopal BR, Ganesh KN. Cγ( S/ R)-Bimodal Peptide Nucleic Acids (Cγ- bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. J Org Chem 2020; 85:13680-13693. [PMID: 32985197 DOI: 10.1021/acs.joc.0c01853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
38
|
The pHLIP system as a vehicle for microRNAs in the kidney. Nefrologia 2020; 40:491-498. [PMID: 32693933 DOI: 10.1016/j.nefro.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.
Collapse
|
39
|
Gupta MK, Madhanagopal BR, Datta D, Ganesh KN. Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes. Org Lett 2020; 22:5255-5260. [PMID: 32551691 DOI: 10.1021/acs.orglett.0c01950] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bimodal PNAs are new PNA constructs designed to bind two different cDNA sequences synchronously to form double duplexes. They are synthesized on solid phase using sequential coupling and click reaction to introduce a second base in each monomer at Cα via alkyltriazole linker. The ternary bimodal PNA:DNA complexes show stability higher than that of individual duplexes. Bimodal PNAs are appropriate to create higher-order fused nucleic acid assemblies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
40
|
Kumar S, Pearse A, Liu Y, Taylor RE. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nat Commun 2020; 11:2960. [PMID: 32528008 PMCID: PMC7289805 DOI: 10.1038/s41467-020-16759-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/20/2020] [Indexed: 02/03/2023] Open
Abstract
Nucleic acid-based materials enable sub-nanometer precision in self-assembly for fields including biophysics, diagnostics, therapeutics, photonics, and nanofabrication. However, structural DNA nanotechnology has been limited to substantially hydrated media. Transfer to organic solvents commonly used in polymer and peptide synthesis results in the alteration of DNA helical structure or reduced thermal stabilities. Here we demonstrate that gamma-modified peptide nucleic acids (γPNA) can be used to enable formation of complex, self-assembling nanostructures in select polar aprotic organic solvent mixtures. However, unlike the diameter-monodisperse populations of nanofibers formed using analogous DNA approaches, γPNA structures appear to form bundles of nanofibers. A tight distribution of the nanofiber diameters could, however, be achieved in the presence of the surfactant SDS during self-assembly. We further demonstrate nanostructure morphology can be tuned by means of solvent solution and by strand substitution with DNA and unmodified PNA. This work thereby introduces a science of γPNA nanotechnology.
Collapse
Affiliation(s)
- Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander Pearse
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Swenson CS, Heemstra JM. Peptide nucleic acids harness dual information codes in a single molecule. Chem Commun (Camb) 2020; 56:1926-1935. [PMID: 32009137 DOI: 10.1039/c9cc09905k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nature encodes the information required for life in two fundamental biopolymers: nucleic acids and proteins. Peptide nucleic acid (PNA), a synthetic analog comprised of nucleobases arrayed along a pseudopeptide backbone, has the ability to combine the power of nucleic acids to encode information with the versatility of amino acids to encode structure and function. Historically, PNA has been perceived as a simple nucleic acid mimic having desirable properties such as high biostability and strong affinity for complementary nucleic acids. In this feature article, we aim to adjust this perception by highlighting the ability of PNA to act as a peptide mimic and showing the largely untapped potential to encode information in the amino acid sequence. First, we provide an introduction to PNA and discuss the use of conjugation to impart tunable properties to the biopolymer. Next, we describe the integration of functional groups directly into the PNA backbone to impart specific physical properties. Lastly, we highlight the use of these integrated amino acid side chains to encode peptide-like sequences in the PNA backbone, imparting novel activity and function and demonstrating the ability of PNA to simultaneously mimic both a peptide and a nucleic acid.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|