1
|
Xiong S, Huang Z, Mukwaya V, Zhao W, Wang L, Dou H. Cell-Targeting Bio-Catalytic Killer Protocell for High-Order Assembly Guided Cancer Cell Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500047. [PMID: 40270292 DOI: 10.1002/smll.202500047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/03/2025] [Indexed: 04/25/2025]
Abstract
The design and construction of synthetic therapeutic protocells capable of engaging in high-order assembly with living cells represent a significant challenge in synthetic biology and bioengineering. Inspired by cell membrane receptor-ligand systems, a protocell bioreactor is developed for targeted cancer cell elimination. This is achieved by constructing orthogonal, polysaccharide-based protocells (polysaccharidosomes, P-somes) through a bottom-up approach that leverages host-guest chemistry. The protocells are assembled via electrostatically-driven self-assembly of β-cyclodextrin (β-CD)-modified amino-dextran on a sacrificial template encapsulating glucose oxidase (GOx). To enable specific cancer cell targeting and catalytic activity, cell-targeting ligands (arginylglycylaspartic acid, cRGD) and catalase-like platinum-gold nanoparticles (Pt-AuNPs) are introduced through host-guest interactions, forming a fully functional, cell-targeting, bio-catalytic killer protocell. These protocells are programmed to spatially couple the GOx/Pt-AuNP catalytic reaction cascade. In the presence of glucose and hydroxyurea, this cascade generates a localized flux of nitric oxide (NO), which is exploited for in vitro cancer cell inhibition. Overall, the results highlight the potential of integrating orthogonal and synergistic tumor inhibition mechanisms within synthetic microcompartments. This platform demonstrates promise for future therapeutic applications, especially in cancer treatment, and represents a step forward in the development of programmable protocell-based therapeutic systems.
Collapse
Affiliation(s)
- Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeqi Huang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Nazmutdinov RR, Shermokhamedov SA, Zinkicheva TT, Ulstrup J, Xiao X. Understanding molecular and electrochemical charge transfer: theory and computations. Chem Soc Rev 2023; 52:6230-6253. [PMID: 37551138 DOI: 10.1039/d2cs00006g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the S2O82- anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. (In operando) scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.
Collapse
Affiliation(s)
- Renat R Nazmutdinov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Shokirbek A Shermokhamedov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Tamara T Zinkicheva
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
| | - Jens Ulstrup
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.
- Department of Chemistry, Technical University of Denmark, Building 207, Kemitorvet, 2800 Kongens Lyngby, Denmark.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Efficient electron transfer through insulating lipid bilayers containing Au clusters. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Pavlov SV, Kozhevnikova YO, Kislenko VA, Kislenko SA. Modulation of the kinetics of outer-sphere electron transfer at graphene by a metal substrate. Phys Chem Chem Phys 2022; 24:25203-25213. [PMID: 36254968 DOI: 10.1039/d2cp03771h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Solid-supported graphene is a typical configuration of electrochemical devices based on single-layer graphene. Therefore, it is necessary to understand the electrochemical features of such heterostructures. In this work, we theoretically investigated the effect of the metal type on the nonadiabatic electron transfer (ET) at the metal-supported graphene using DFT calculations. We considered five metals Au, Ag, Pt, Cu, and Al on which graphene is physically adsorbed. It is shown that all metals catalyze the ET. The electrocatalytic effect increases in the following series Al < Au ≲ Ag ≈ Cu < Pt. The enhanced ET in the presence of the metal substrate is explained by the hybridization of metal and graphene states, due to which the coupling between the reactant in an electrolyte and metal is increased. Metal-dependent electrocatalytic effect is explained both by different densities of states at the Fermi level of the systems and by differences in the behaviour of the tails of hybridized wave functions in the electrolyte region. The shift of the Fermi level with respect to the Dirac point in graphene when charging at the metal/graphene/electrolyte interface does not affect the kinetics due to the small contribution of graphene states to the electron transfer.
Collapse
Affiliation(s)
- Sergey V Pavlov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Yekaterina O Kozhevnikova
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Vitaliy A Kislenko
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
5
|
Liu X, Tian Q, Li Y, Zhou Z, Wang J, Liu S, Wang C. Electron transfer dynamics and electrocatalytic oxygen evolution activities of the Co3O4 nanoparticles attached to indium tin oxide by self-assembled monolayers. Front Chem 2022; 10:919192. [PMID: 36092657 PMCID: PMC9448888 DOI: 10.3389/fchem.2022.919192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Co3O4 nanoparticle-modified indium tin oxide-coated glass slide (ITO) electrodes are successfully prepared using dicarboxylic acid as the self-assembled monolayer through a surface esterification reaction. The ITO-SAM-Co3O4 (SAM = dicarboxylic acid) are active to electrochemically catalyze oxygen evolution reaction (OER) in acid. The most active assembly, with Co loading at 3.31 × 10−8 mol cm−2, exhibits 374 mV onset overpotential and 497 mV overpotential to reach 1 mA cm−2 OER current in 0.1 M HClO4. The electron transfer rate constant (k) is acquired using Laviron’s approach, and the results show that k is not affected by the carbon chain lengths of the SAM (up to 18 -CH2 groups) and that an increase in the average diameter of Co3O4 nanoparticles enhances the k. In addition, shorter carbon chains and smaller Co3O4 nanoparticles can increase the turn-over frequency (TOF) of Co sites toward OER. The Co3O4 nanoparticles tethered to the ITO surface show both a higher number of electrochemically active Co sites and a higher TOF of OER than the Co3O4 nanoparticles bound to ITO using Nafion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao Wang
- *Correspondence: Shuling Liu, ; Chao Wang,
| |
Collapse
|
6
|
Astruc D. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry 2021; 27:16291-16308. [PMID: 34427365 DOI: 10.1002/chem.202102477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist's view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM UMR N°5801, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
7
|
Engelbrekt C, Nazmutdinov RR, Shermukhamedov S, Ulstrup J, Zinkicheva TT, Xiao X. Complex single‐molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Renat R. Nazmutdinov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Shokirbek Shermukhamedov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Tamara T. Zinkicheva
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| |
Collapse
|
8
|
Nie W, Zhu Q, Gao Y, Wang Z, Liu Y, Wang X, Chen R, Fan F, Li C. Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism. NANO LETTERS 2021; 21:8901-8909. [PMID: 34647747 DOI: 10.1021/acs.nanolett.1c03529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.
Collapse
Affiliation(s)
- Wei Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xun Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
9
|
Kislenko SA, Pavlov SV, Nazmutdinov RR, Kislenko VA, Chekushkin PM. Effect of a Au underlayer on outer-sphere electron transfer across a Au/graphene/electrolyte interface. Phys Chem Chem Phys 2021; 23:22984-22991. [PMID: 34611675 DOI: 10.1039/d1cp03051e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effect of a gold underlayer on the outer-sphere non-adiabatic electron transfer on a graphene surface is investigated theoretically using both periodic and cluster DFT calculations. We propose a model that describes the alignment of energy levels and charge redistribution at the metal/graphene/redox electrolyte interface. Model calculations were performed for the [Fe(CN)6]3-/4- and [Ru(NH3)6]3+/2+ redox couples. It is shown that the gold support increases the rate constant of electron transfer. Gold electronic states hybridize with graphene wave functions, which provides an effective overlap with reactant orbitals outside the graphene layer and favors an increasing reaction rate. Although the Fermi level shift relative to the Dirac point in graphene depends significantly on the redox couple, this weakly affects the electron transfer kinetics at the Au(111)/graphene/electrolyte interface due to a small contribution of graphene states to the rate constant as compared to gold ones.
Collapse
Affiliation(s)
- Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey V Pavlov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Renat R Nazmutdinov
- Kazan National Research Technological University, R. Marx Str. 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Vitaliy A Kislenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Petr M Chekushkin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
10
|
Yan X, Ma S, Tang J, Tanner D, Ulstrup J, Xiao X, Zhang J. Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Construction of iridium oxide nanoparticle modified indium tin oxide electrodes with polycarboxylic acids and pyrophosphoric acid and their application to water oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Liu J, Cai ZY, Yang MH, Huang YJ, Wang JZ, Devasenathipathy R, Zhang YM, Zhou JZ, Wu DY, Tian ZQ. Plasmonic photoelectrochemical dimerization and reduction of p-halo-nitrobenzene on AgNPs@Ag electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Zhang C, Zhou F, Zhan S, Song Y, Wang F, Lai J. The enhanced photocatalytic inactivation of marine microorganisms over ZnO supported Ag quantum dots by the synthesis of H 2O 2. ENVIRONMENTAL RESEARCH 2021; 197:111129. [PMID: 33839116 DOI: 10.1016/j.envres.2021.111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The production of hydroxyl radicals has been demonstrated to improve the antifouling of marine through a photocatalytic strategy. However, only relying on the valence band of the photocatalyst to generate hydroxyl radicals is inefficient and limits the application of photocatalytic technology in the field of marine-antifouling coatings. Herein, we reported a new strategy in which Ag quantum dots are used to synthesize hydrogen peroxide (H2O2) by photocatalysis in seawater. The decomposition of the generated H2O2 to hydroxyl radicals improves the antifouling ability. Interestingly, the prominent size effect of Ag quantum dots is closely related to the yield of H2O2. We synthesized Ag quantum dots supported on ZnO and found that Ag quantum dots approximately 4 nm in size have the highest activity for H2O2 generation and undergo a 1 h photocatalytic reaction in which the concentration of H2O2 can reach 124 μg/mL. The efficiency of ZnO in inactivating marine microorganisms increased from 72.3% to 99.4% in seawater. The synthesis of H2O2 through photocatalysis based on the medium of seawater can expand the application of photocatalytic technology in the field of marine antifouling.
Collapse
Affiliation(s)
- Chenglin Zhang
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Feng Zhou
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China.
| | - Su Zhan
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Yupeng Song
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Fengguang Wang
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Jianfu Lai
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| |
Collapse
|
14
|
Yan X, Jansen CU, Diao F, Qvortrup K, Tanner D, Ulstrup J, Xiao X. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-assembled molecular monolayers (SAMs) have long been recognized as crucial “bridges” between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance and SAM chain length, and the contacting terminal SAM groups, are the most significant controlling factors in DET-type bioelectrocatalysis. In particular, SAM-modified nanostructured electrode materials have recently been extensively explored to improve the catalytic activity and stability of redox proteins immobilized on electrochemical surfaces. In this report, we present an overview of recent investigations of electrochemical enzyme DET processes on SAMs with a focus on single-crystal and nanoporous gold electrodes. Specifically, we consider the preparation and characterization methods of SAMs, as well as SAM applications in promoting interfacial electrochemical electron transfer of redox proteins and enzymes. The strategic selection of SAMs to accord with the properties of the core redox protein/enzymes is also highlighted.
Collapse
|