1
|
Li H, Li J, Zu B, Du Y, Su Y, Dou X. Precise counter anion modulation of the self-assembly behavior-endowed ultrasensitive and specific dual-mode visualization of nitrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135014. [PMID: 38941839 DOI: 10.1016/j.jhazmat.2024.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Pt(II) polypyridine complex-based probe exhibits promising performance in anion detection by the change of the absorption and emission properties based on supramolecular self-assembly. However, whether one can develop a modulation strategy of the counter anion to boost the detection sensitivity and anti-interference capability of the Pt(II) complex-based probe remains a big challenge. Here, an effective modulation strategy was proposed by precisely regulating the interaction energy through adjusting the type of the counter anions, and a series of probes have been synthesized by counter anion (X = Cl-, ClO4-, PF6-) exchange in [Pt(tpy)Cl]·X (tpy=2,2':6',2''-terpyridine), and thus the colorimetric-luminescence dual-mode detection toward nitrate was achieved. The optimal [Pt(tpy)Cl]·Cl probe shows superior nitrate detection performance including a limit of detection (LOD) (8.68 nM), rapid response (<0.5 s), an excellent selectivity and anti-interference capability even facing 14 common anions. Moreover, a polyvinyl alcohol (PVA) sponge-based sensing chip loaded with the probe enables the ultra-sensitive detection of nitrate particles with an ultralow detection limit of 7.6 pg, and it was further integrated into a detection pen for the accurate recognition of nitrate particles in real scenarios. The proposed counter-anion modulation strategy is expected to start a new frontier for the exploration of novel Pt(II) complex-based probes.
Collapse
Affiliation(s)
- Honghong Li
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang SY, Chen Y, Kwok RTK, Lam JWY, Tang BZ. Platinum complexes with aggregation-induced emission. Chem Soc Rev 2024; 53:5366-5393. [PMID: 38712843 DOI: 10.1039/d4cs00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transition metal-containing materials with aggregation-induced emission (AIE) have brought new opportunities for the development of biological probes, optoelectronic materials, stimuli-responsive materials, sensors, and detectors. Coordination compounds containing the platinum metal have emerged as a promising option for constructing effective AIE platinum complexes. In this review, we classified AIE platinum complexes based on the number of ligands. We focused on the development and performance of AIE platinum complexes with different numbers of ligands and discussed the impact of platinum ion coordination and ligand structure variation on the optoelectronic properties. Furthermore, this review analyzes and summarizes the influence of molecular geometries, stacking models, and aggregation environments on the optoelectronic performance of these complexes. We provided a comprehensive overview of the AIE mechanisms exhibited by various AIE platinum complexes. Based on the unique properties of AIE platinum complexes with different numbers of ligands, we systematically summarized their applications in electronics, biological fields, etc. Finally, we illustrated the challenges and opportunities for future research on AIE platinum complexes, aiming at giving a comprehensive summary and outlook on the latest developments of functional AIE platinum complexes and also encouraging more researchers to contribute to this promising field.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Yingying Chen
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Rejc L, Knez D, Molina-Aguirre G, Espargaró A, Kladnik J, Meden A, Blinc L, Lozinšek M, Jansen-van Vuuren RD, Rogan M, Martek BA, Mlakar J, Dremelj A, Petrič A, Gobec S, Sabaté R, Bresjanac M, Pinter B, Košmrlj J. Probing Alzheimer's pathology: Exploring the next generation of FDDNP analogues for amyloid β detection. Biomed Pharmacother 2024; 175:116616. [PMID: 38723516 DOI: 10.1016/j.biopha.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Fluorescent probes are a powerful tool for imaging amyloid β (Aβ) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aβ fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aβ- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aβ fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aβ1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aβ plaques. The intermolecular interactions of fluorophores with Aβ were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aβ1-42 in cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | | | - Alba Espargaró
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Lana Blinc
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matic Rogan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Bruno Aleksander Martek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jernej Mlakar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, Ljubljana SI-1000, Slovenia
| | - Ana Dremelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Andrej Petrič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia.
| | - Raimon Sabaté
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Mara Bresjanac
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
4
|
Li Z, Ekanayake AB, Bartman AE, Doorn JA, Tivanski AV, Pigge FC. Detection and disaggregation of amyloid fibrils by luminescent amphiphilic platinum(II) complexes. Dalton Trans 2024; 53:9001-9010. [PMID: 38726661 DOI: 10.1039/d4dt00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aβ42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.
Collapse
Affiliation(s)
- Zhuoheng Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | - Anna E Bartman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
5
|
Wang Y, Li N, Chu L, Hao Z, Chen J, Huang J, Yan J, Bian H, Duan P, Liu J, Fang Y. Dual Enhancement of Phosphorescence and Circularly Polarized Luminescence through Entropically Driven Self-Assembly of a Platinum(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202403898. [PMID: 38497553 DOI: 10.1002/anie.202403898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.
Collapse
Affiliation(s)
- Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Na Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Liangwen Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Zelin Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Junyu Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
6
|
Khanra P, Rajdev P, Das A. Seed-Induced Living Two-Dimensional (2D) Supramolecular Polymerization in Water: Implications on Protein Adsorption and Enzyme Inhibition. Angew Chem Int Ed Engl 2024; 63:e202400486. [PMID: 38265331 DOI: 10.1002/anie.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
7
|
Deng Y, Guo Y, Zhang Y. Aggregation of gold nanoclusters in amyloid fibers: a luminescence assay for amyloid fibrillation detection and inhibitor screening. Analyst 2024; 149:870-875. [PMID: 38170814 DOI: 10.1039/d3an01789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Amyloid fibrillation is associated with a great variety of human diseases, such as Alzheimer's and Huntington's diseases. A fluorescence assay for amyloid fibrillation detection and inhibitor screening was developed based on the fact that the fluorescence emission of gold nanoclusters (Au NCs) is largely enhanced upon adding amyloids, such as lysozyme amyloid fibers. A good linear relationship exists between the enhanced fluorescence intensity of Au NCs and lysozyme fiber within the concentration range of 0-0.05 mg mL-1. This ultra-sensitive method can detect the protein fiber earlier than thioflavin T (THT), allowing more time for disease treatment. Furthermore, Au NCs have many advantages over the classical probe (i.e., THT), such as large Stokes shifts and low toxicity. We selected ascorbic acid as a representative inhibitor and used this method to screen inhibitors. If inhibitors are added when incubating lysozyme, the lysozyme fibrosis process will be crimped, decreasing the amount of lysozyme fibers.
Collapse
Affiliation(s)
- Yilin Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Ying Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| |
Collapse
|
8
|
Chan CWT, Law ASY, Yam VWW. A Luminescence Assay in the Red for the Detection of Hydrogen Peroxide and Glucose Based on Metal Coordination Polyelectrolyte-Induced Supramolecular Self-Assembly of Alkynylplatinum(II) Complexes. Chemistry 2023; 29:e202300203. [PMID: 37254458 DOI: 10.1002/chem.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
A new sensing strategy towards hydrogen peroxide based on metal coordination polyelectrolyte-driven self-assembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complex was demonstrated. The cationic in situ-generated Ag(I)-thiocholine coordination polyelectrolytes were shown to induce the supramolecular self-assembly of anionic low-energy red-emissive alkynylplatinum(II) bzimpy complexes via non-covalent Pt(II)⋅⋅⋅Pt(II), electrostatic and π-π stacking interactions. The presence of hydrogen peroxide was shown to inhibit the formation of coordination polyelectrolytes and the coordination polyelectrolyte-induced self-assembly of platinum(II) complexes. The weakening of Pt(II)⋅⋅⋅Pt(II), electrostatic and π-π stacking interactions was supported by UV-vis absorption, emission, and resonance light scattering (RLS) studies. The present assay was also applied to probe glucose indirectly based on the enzymatic reaction of glucose oxidase on the substrate. Operating in a label-free manner, together with the low-energy red emission and large Stokes shift of alkynylplatinum(II) complexes, these features render the proposed design attractive for biological applications.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Angela Sin-Yee Law
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
9
|
Chan CWT, Chan K, Yam VWW. Induced Self-Assembly and Disassembly of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complexes with Charge Reversal Properties: "Proof-of-Principle" Demonstration of Ratiometric Förster Resonance Energy Transfer Sensing of pH. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25122-25133. [PMID: 35766435 DOI: 10.1021/acsami.2c05677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
Collapse
Affiliation(s)
- Calford Wai-Ting Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Kevin Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Borsdorf L, Herkert L, Bäumer N, Rubert L, Soberats B, Korevaar PA, Bourque C, Gatsogiannis C, Fernández G. Pathway-Controlled Aqueous Supramolecular Polymerization via Solvent-Dependent Chain Conformation Effects. J Am Chem Soc 2023; 145:8882-8895. [PMID: 37053499 DOI: 10.1021/jacs.2c12442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.
Collapse
Affiliation(s)
- Lorenz Borsdorf
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lorena Herkert
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Bäumer
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Llorenç Rubert
- Department of Chemistry, Universitat de les Iles Balears, Cra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Iles Balears, Cra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cole Bourque
- Westfälische Wilhelms-Universität Münster, Institute of Medical Physics and Biophysics, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Christos Gatsogiannis
- Westfälische Wilhelms-Universität Münster, Institute of Medical Physics and Biophysics, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
11
|
Chan MHY, Yam VWW. Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. J Am Chem Soc 2022; 144:22805-22825. [DOI: 10.1021/jacs.2c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
12
|
Li B, Wang Y, Chan MH, Pan M, Li Y, Yam VW. Supramolecular Assembly of Organoplatinum(II) Complexes for Subcellular Distribution and Cell Viability Monitoring with Differentiated Imaging. Angew Chem Int Ed Engl 2022; 61:e202210703. [DOI: 10.1002/anie.202210703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Yaping Wang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Michael Ho‐Yeung Chan
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yonguang Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| |
Collapse
|
13
|
Wang J, Xia B, Su T, Lin T, Gao M, Zhao C, Wu X, Lin C. Recyclable photoluminescent composites via incorporating
ZnS
‐based phosphors into dynamic crosslinking elastomeric matrixes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinyun Wang
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
- College of Physical Science and Technology Northwestern Polytechnical University Xi'an P. R. China
| | - Biao Xia
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Tong Su
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Tengfei Lin
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Min Gao
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Chunlin Zhao
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Xiao Wu
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Cong Lin
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| |
Collapse
|
14
|
Das Saha N, Pradhan S, Sasmal R, Sarkar A, Berač CM, Kölsch JC, Pahwa M, Show S, Rozenholc Y, Topçu Z, Alessandrini V, Guibourdenche J, Tsatsaris V, Gagey-Eilstein N, Agasti SS. Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. J Am Chem Soc 2022; 144:14363-14379. [PMID: 35913703 DOI: 10.1021/jacs.2c05969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
Collapse
Affiliation(s)
- Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumen Pradhan
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Aritra Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jonas C Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Yves Rozenholc
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zeki Topçu
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Vivien Alessandrini
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Vassilis Tsatsaris
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | | | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
15
|
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022; 380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
Collapse
|
16
|
Wong EKH, Chan MHY, Tang WK, Leung MY, Yam VWW. Molecular Alignment of Alkynylplatinum(II) 2,6-Bis(benzimidazol-2-yl)pyridine Double Complex Salts and the Formation of Well-Ordered Nanostructures Directed by Pt···Pt and Donor-Acceptor Interactions. J Am Chem Soc 2022; 144:5424-5434. [PMID: 35302371 DOI: 10.1021/jacs.1c12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new class of alkynylplatinum(II) bzimpy (bzimpy = bis(benzimidazol-2-yl)pyridine) double complex salts (DCSs) containing dialkoxynaphthalene or pyromellitic diimide moieties on the alkynyl ligand has been reported to display distinct morphological properties compared to their precursor alkynylplatinum(II) complexes, with the capability of being aligned by the directional Pt···Pt and/or π-π stacking interactions. The incorporation of donor and acceptor units on the alkynyl ligands has been found to significantly perturb the alignment of the oppositely charged complex ions in the DCSs to stack in a twisted head-to-head manner, attributed to the additional driving forces of electrostatic and donor-acceptor interactions. The modulation of the Pt···Pt distances and the extent of aggregate formation have been demonstrated by altering the charge matching between the platinum(II) bzimpy moieties and the donor or acceptor moieties on the alkynyl ligand.
Collapse
Affiliation(s)
- Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Wai Kit Tang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
17
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Roy S, Lopez AA, Yarnell JE, Castellano FN. Metal-Metal-to-Ligand Charge Transfer in Pt(II) Dimers Bridged by Pyridyl and Quinoline Thiols. Inorg Chem 2021; 61:121-130. [PMID: 34955020 DOI: 10.1021/acs.inorgchem.1c02469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The investigation of two distinct species of square planar dinuclear Pt(II) dimers based on anti-[Pt(C∧N)(μ-N∧S)]2, where C∧N is either 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and N∧S is pyridine-2-thiol (pyt), 6-methylpyridine-2-thiol (Mpyt), or 2-quinolinethiol (2QT), is presented. Each molecule was thoroughly characterized with electronic structure calculations, static UV-vis and photoluminescence (PL) spectroscopy, and cyclic voltammetry, along with transient absorbance and time-gated PL experiments. These visible absorbing chromophores feature metal-metal-to-ligand charge-transfer (MMLCT) excited states that originate from intramolecular d8-d8 metal-metal σ-interactions and are manifested in the ground- and excited-state properties of these molecules. All five molecules reported (anti-[Pt(ppy)(μ-Mpyt)]2 could not be isolated), three of which are newly conceived here, possess electronic absorptions past 500 nm and high quantum yield PL emission with spectra extending into the far red (λem > 700 nm), originating from the charge-transfer state in each instance. Each chromophore displays excited-state decay kinetics adequately modeled by single exponentials as recorded using dynamic absorption and PL experiments; each technique yields similar decay kinetics. The combined data illustrate that pyridyl and quinoline-thiolates in conjunction with select cyclometalates represent classes of MMLCT chromophores that exhibit excited-state properties suitable for promoting light-energized chemical reactions and provide a molecular platform suitable for evaluating coherence phenomena in transient metal-metal bond-forming photochemistry.
Collapse
Affiliation(s)
- Subhangi Roy
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Antonio A Lopez
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
19
|
Cheung ASH, Chan MHY, Po C, Hong EYH, Yam VWW. Photo-modulated supramolecular self-assembly of ortho-nitrobenzyl ester-based alkynylplatinum(II) 2,6-bis( N-alkylbenzimidazol-2'-yl)pyridine complexes. Chem Commun (Camb) 2021; 57:13708-13711. [PMID: 34842259 DOI: 10.1039/d1cc05754e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enhanced supramolecular self-assembly behaviors of photo-caged platinum(II) complexes have been triggered by applying light as the external stimulus. Distinct morphological transformation of the nanoaggregates has been observed in the photo-caged complexes before and after UV irradiation.
Collapse
Affiliation(s)
- Andy Shun-Hoi Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Charlotte Po
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| |
Collapse
|
20
|
Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Bo Jiang
- Department of Chemistry Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| | - Angel A. Martí
- Department of Chemistry Department of Bioengineering, and Department of Material Science & NanoEngineering Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| |
Collapse
|
21
|
Ning Y, Jin GQ, Wang MX, Gao S, Zhang JL. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 2021; 66:102097. [PMID: 34775149 DOI: 10.1016/j.cbpa.2021.102097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Biological imaging and biosensing from subcellular/cellular level to whole body have enabled non-invasive visualisation of molecular events during various biological and pathological processes, giving great contributions to the rapid and impressive advances in chemical biology, drug discovery, disease diagnosis and prognosis. Optical imaging features a series of merits, including convenience, high resolution, good sensitivity, low cost and the absence of ionizing radiation. Among different luminescent probes, metal-based molecules offer unique promise in optical bioimaging and biosensing in vitro and in vivo, arising from their small sizes, strong luminescence, large Stokes shifts, long lifetimes, high photostability and tunable toxicity. In this review, we aim to highlight the design of metal-based molecular probes from the standpoint of synthetic chemistry in the last 2 years for optical imaging, covering d-block transition metal and lanthanide complexes and multimodal imaging agents.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Meng-Xin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China; Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China.
| |
Collapse
|
22
|
Wang Y, Mei D, Zhang X, Qu DH, Mei J. Visualizing Aβ deposits in live young AD model mice with a simple red/near-infrared-fluorescent AIEgen. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1113-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
24
|
Mei H, Gao Z, Zhao K, Li M, Ashokkumar M, Song A, Cui J, Caruso F, Hao J. Sono‐Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hanxiao Mei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | | | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao Shandong 266237 China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| |
Collapse
|
25
|
Mei H, Gao Z, Zhao K, Li M, Ashokkumar M, Song A, Cui J, Caruso F, Hao J. Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angew Chem Int Ed Engl 2021; 60:21529-21535. [PMID: 34342111 DOI: 10.1002/anie.202108462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Indexed: 12/14/2022]
Abstract
We report a sono-Fenton strategy to mediate the supramolecular assembly of metal-phenolic networks (MPNs) as substrate-independent coatings using phenol and phenyl derivatives as building blocks. The assembly process is initiated from the generation of hydroxyl radicals (. OH) using high-frequency ultrasound (412 kHz), while the metal ions synergistically participate in the production of additional . OH for hydroxylation/phenolation of phenol and phenyl derivatives via the Fenton reaction and also coordinate with the phenolic compounds for film formation. The coating strategy is applicable to various phenol and phenyl derivatives and different metal ions including FeII , FeIII , CuII , and CoII . In addition, the sono-Fenton strategy allows real-time control over the assembly process by turning the high-frequency ultrasound on or off. The properties of the building blocks are maintained in the formed films. This work provides an environmentally friendly and controllable method to expand the application of phenolic coatings for surface engineering.
Collapse
Affiliation(s)
- Hanxiao Mei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | | | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
26
|
Pereira LMB, Cali MP, Marchi RC, Pazin WM, Carlos RM. Luminescent imaging of insulin amyloid aggregation using a sensitive ruthenium-based probe in the red region. J Inorg Biochem 2021; 224:111585. [PMID: 34450412 DOI: 10.1016/j.jinorgbio.2021.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
A sensitive and selective strategy to identify insulin fibrils remains a challenge for researchers in amyloid protein research. Thus, it is critical to detect, in vitro, the species generated during amyloid aggregation, particularly the fibrillar species. Here we demonstrate that the luminescent complex cis-[Ru(phen)2(3,4Apy)2]2+ (RuApy; phen = 1,10-phenanthroline; 3,4Apy = 3,4-diaminopyridine) is a rapid, low-cost alternative to in vitro detection of fibrillar insulin, using conventional optical techniques. The RuApy complex displays emission intensity enhancement at 655 nm when associated with insulin, which enables imaging of the conformational changes of the protein's self-aggregation. The complex shows high sensitivity to fibrillar insulin with a limit of detection of 0.85 μM and binding affinity of 12.40 ± 1.84 μM which is comparable to those of Thioflavin T and Congo red, with the advantage of minimizing background fluorescence, absorption of light by biomolecules, and light scattering from physiologic salts in the medium.
Collapse
Affiliation(s)
- Lorena M B Pereira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Mariana P Cali
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Rafael C Marchi
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Wallance M Pazin
- Department of Physics, Universidade Estadual Paulista, Presidente Prudente, São Paulo 19060-900, Brazil
| | - Rose M Carlos
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
27
|
Sicilia V, Arnal L, Escudero D, Fuertes S, Martin A. Chameleonic Photo- and Mechanoluminescence in Pyrazolate-Bridged NHC Cyclometalated Platinum Complexes. Inorg Chem 2021; 60:12274-12284. [PMID: 34339189 PMCID: PMC8892954 DOI: 10.1021/acs.inorgchem.1c01470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT investigations on the ground (GS) and the first triplet (T1) excited state potential energy surfaces (PES) were performed on a new series of platinum-butterfly complexes, [{Pt(C∧C*)(μ-Rpz)}2] (Rpz: pz, 1; 4-Mepz, 2; 3,5-dmpz, 3; 3,5-dppz, 4), containing a cyclometalated NHC in their wings. The geometries of two close-lying local minima corresponding to butterfly spread conformers, 1s-4s, and butterfly folded ones, 1f-4f, with long and short Pt-Pt separations, respectively, were optimized in the GS and T1 PES. A comparison of the GS and T1 energy profiles revealed that an opposite trend is obtained in the relative stability of folded and spread conformers, the latter being more stabilized in their GS. Small ΔG (s/f) along with small-energy barriers in the GS support the coexistence of both kinds of conformers, which influence the photo- and mechanoluminescence of these complexes. In 5 wt % doped PMMA films in the air, these complexes exhibit intense sky-blue emissions (PLQY: 72.0-85.9%) upon excitation at λ ≤ 380 nm arising from 3IL/MLCT excited states, corresponding to the predominant 1s-4s conformers. Upon excitation at longer wavelengths (up to 450 nm), the minor 1f-4f conformers afford a blue emission as well, with PLQY still significant (40%-60%). In the solid state, the as-prepared powder of 4 exhibits a greenish-blue emission with QY ∼ 29%, mainly due to 3IL/3MLCT excited states of butterfly spread molecules, 4s. Mechanical grinding resulted in an enhanced and yellowish-green emission (QY ∼ 51%) due to the 3MMLCT excited states of butterfly folded molecules, 4f, in such a way that the mechanoluminescence has been associated with an intramolecular structural change induced by mechanical grinding.
Collapse
Affiliation(s)
- Violeta Sicilia
- Departamento de Quimica Inorganica, Escuela de Ingenieria y Arquitectura de Zaragoza, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Sara Fuertes
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martin
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
28
|
Das B, Gupta P. Trinuclear Organometallic Pt-Ir-Pt Complexes: Insights into Photophysical Properties, Amino Acid Binding and Protein Sensing. Chem Asian J 2021; 16:2495-2503. [PMID: 34254446 DOI: 10.1002/asia.202100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/08/2022]
Abstract
The rational synthesis of trinuclear emissive organometallic complexes with two equivalent platinum(II) centres appended to the ancillary substituted 2,2'-bipyridyl ligand of the cyclometalated iridium(III) centre is reported here. The alkynyl-platinum moiety and cyclometalated iridium(III) centres have been separated through a non-conjugated CH2 -O-CH2 linkage. The emission titration with amino acids reveals that the complexes sense free amino acids. The luminescence sensing of BSA is thus attributed to the amino acid sensing ability of the complexes and confirmed by emission anisotropy and Far-UV CD spectral study. The decrease in α-helix in the CD spectra signifies the changes in the secondary structure of protein in presence of the complexes.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
29
|
Bäumer N, Kartha KK, Buss S, Palakkal JP, Strassert CA, Fernández G. Exploiting coordination geometry to tune the dimensions and processability of metallosupramolecular polymers. Org Chem Front 2021; 8:4138-4143. [PMID: 34354839 PMCID: PMC8314868 DOI: 10.1039/d1qo00644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Achieving precise control over the morphology, dimensions and processability of functional materials is a key but challenging requirement for the fabrication of smart devices. To address this issue, we herein compare the self-assembly behavior of two new Pt(ii) complexes that differ in the molecular and coordination geometry through implementation of either a monodentate (pyridine) or bidentate (bipyridine) ligand. The molecular preorganization of the bipyridine-based complex enables effective self-assembly in solution involving Pt⋯Pt interactions, while preserving aggregate solubility. On the other hand, increased steric effects of the linear bispyridine-based complex hinder an effective preorganization leading to poorly solvated aggregates when a critical concentration is exceeded.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 48149 Münster Germany.,CeNTech, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Jasnamol P Palakkal
- Institute of Materials Science, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 48149 Münster Germany.,CeNTech, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Gustavo Fernández
- Organisch Chemisches Institut, Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
30
|
Hou YJ, Zheng X, Zhong HM, Chen F, Yan GY, Cai KC. Structural dynamics of amyloid β peptide binding to acetylcholine receptor and virtual screening for effective inhibitors. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2008150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yan-jun Hou
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Xuan Zheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-mei Zhong
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
| | - Gui-yang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
| | - Kai-cong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
31
|
Platinum(II) N-heterocyclic carbene complexes arrest metastatic tumor growth. Proc Natl Acad Sci U S A 2021; 118:2025806118. [PMID: 33883283 DOI: 10.1073/pnas.2025806118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.
Collapse
|
32
|
Law ASY, Lee LCC, Lo KKW, Yam VWW. Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening. J Am Chem Soc 2021; 143:5396-5405. [PMID: 33813827 DOI: 10.1021/jacs.0c13327] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an important nuclear substructure, the nucleolus has received increasing attention because of its significant functions in the transcription and processing of ribosomal RNA in eukaryotic cells. In this work, we introduce a proof-of-concept luminescence assay to detect RNA and to accomplish nucleolus imaging with the use of the supramolecular self-assembly of platinum(II) complexes. Noncovalent interactions between platinum(II) complexes and RNA can be induced by the introduction of a guanidinium group into the complexes, and accordingly, a high RNA affinity can be achieved. Interestingly, the aggregation affinities of platinum(II) complexes enable them to display remarkable luminescence turn-on upon RNA binding, which is a result of the strengthening of noncovalent Pt(II)···Pt(II) and π-π stacking interactions. The complexes exhibit not only intriguing spectroscopic changes and luminescence enhancement after RNA binding but also specific nucleolus imaging in cells. As compared to fluorescent dyes, the low-energy red luminescence and large Stokes shifts of platinum(II) complexes afford a high signal-to-background autofluorescence ratio in nucleolus imaging. Additional properties, including long phosphorescence lifetimes and low cytotoxicity, have endowed the platinum(II) complexes with the potential for biological applications. Also, platinum(II) complexes have been adopted to monitor the dynamics of the nucleolus induced by the addition of RNA synthesis inhibitors. This capability allows the screening of inhibitors and can be advantageous for the development of antineoplastic agents. This work provides a novel strategy for exploring the application of platinum(II) complex-based cell imaging agents based on the mechanism of supramolecular self-assembly. It is envisaged that platinum(II) complexes can be utilized as valuable probes because of the aforementioned appealing advantages.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
33
|
Manna SL, Florio D, Iacobucci I, Napolitano F, Benedictis ID, Malfitano AM, Monti M, Ravera M, Gabano E, Marasco D. A Comparative Study of the Effects of Platinum (II) Complexes on β-Amyloid Aggregation: Potential Neurodrug Applications. Int J Mol Sci 2021; 22:ijms22063015. [PMID: 33809522 PMCID: PMC7998721 DOI: 10.3390/ijms22063015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
Herein the effects of three platinum complexes, namely (SP-4-2)-(2,2'-bipyridine)dichloridoplatinum(II), Pt-bpy, (SP-4-2)-dichlorido(1,10-phenanthroline) platinum(II), Pt-phen, and (SP-4-2)-chlorido(2,2':6',2''-terpyridine)platinum(II) chloride, Pt-terpy, on the aggregation of an amyloid model system derived from the C-terminal domain of Aβ peptide (Aβ21-40) were investigated. Thioflavin T (ThT) binding assays revealed the ability of Pt(II) compounds to repress amyloid aggregation in a dose-dependent way, whereas the ability of Aβ21-40 peptide to interfere with ligand field of metal complexes was analyzed through UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. Spectroscopic data provided micromolar EC50 values and allowed to assess that the observed inhibition of amyloid aggregation is due to the formation of adducts between Aβ21-40 peptide and complexes upon the release of labile ligands as chloride and that they can explore different modes of coordination toward Aβ21-40 with respect to the entire Aβ1-40 polypeptide. In addition, conformational studies through circular dichroism (CD) spectroscopy suggested that Pt-terpy induces soluble β-structures of monomeric Aβ21-40, thus limiting self-recognition. Noticeably, Pt-terpy demonstrated the ability to reduce the cytotoxicity of amyloid peptide in human SH-SY5Y neuroblastoma cells. Presented data corroborate the hypothesis to enlarge the application field of already known metal-based agents to neurodegenerative diseases, as potential neurodrugs.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Daniele Florio
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Ilaria Iacobucci
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Maria Monti
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Elisabetta Gabano
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
- Correspondence: ; Tel.: +39-081-2534512; Fax: +39-081-2534574
| |
Collapse
|
34
|
Bäumer N, Kartha KK, Buss S, Maisuls I, Palakkal JP, Strassert CA, Fernández G. Tuning energy landscapes and metal-metal interactions in supramolecular polymers regulated by coordination geometry. Chem Sci 2021; 12:5236-5245. [PMID: 34168776 PMCID: PMC8179630 DOI: 10.1039/d1sc00416f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herein, we exploit coordination geometry as a new tool to regulate the non-covalent interactions, photophysical properties and energy landscape of supramolecular polymers. To this end, we have designed two self-assembled Pt(ii) complexes 1 and 2 that feature an identical aromatic surface, but differ in the coordination and molecular geometry (linear vs. V-shaped) as a result of judicious ligand choice (monodentate pyridine vs. bidentate bipyridine). Even though both complexes form cooperative supramolecular polymers in methylcyclohexane, their supramolecular and photophysical behaviour differ significantly: while the high preorganization of the bipyridine-based complex 1 enables an H-type 1D stacking with short Pt⋯Pt contacts via a two-step consecutive process, the existence of increased steric effects for the pyridyl-based derivative 2 hinders the formation of metal–metal contacts and induces a single aggregation process into large bundles of fibers. Ultimately, this fine control of Pt⋯Pt distances leads to tuneable luminescence—red for 1vs. blue for 2, which highlights the relevance of coordination geometry for the development of functional supramolecular materials. In this article, we exploit coordination geometry as a new tool to control the energy landscape and photophysical properties (red vs. blue luminescence) of supramolecular polymers.![]()
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Stefan Buss
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Iván Maisuls
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Jasnamol P Palakkal
- Technische Universität Darmstadt, Department of Materials and Earth Sciences Alarich-Weiss-Straße 2 64287 Darmstadt Germany
| | - Cristian A Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
35
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Yao X, Wang J, Jiao D, Huang Z, Mhirsi O, Lossada F, Chen L, Haehnle B, Kuehne AJC, Ma X, Tian H, Walther A. Room-Temperature Phosphorescence Enabled through Nacre-Mimetic Nanocomposite Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005973. [PMID: 33346394 PMCID: PMC11468592 DOI: 10.1002/adma.202005973] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Indexed: 06/12/2023]
Abstract
A generic, facile, and waterborne strategy is introduced to fabricate flexible, low-cost nanocomposite films with room-temperature phosphorescence (RTP) by incorporating waterborne RTP polymers into self-assembled bioinspired polymer/nanoclay nanocomposites. The excellent oxygen barrier of the lamellar nanoclay structure suppresses the quenching effect from ambient oxygen (kq ) and broadens the choice of polymer matrices towards lower glass transition temperature (Tg ), while providing better mechanical properties and processability. Moreover, the oxygen permeation and diffusion inside the films can be fine-tuned by varying the polymer/nanoclay ratio, enabling programmable retention times of the RTP signals, which is exploited for transient information storage and anti-counterfeiting materials. Additionally, anti-interception materials are showcased by tracing the interception-induced oxygen history that interferes with the preset self-erasing time. Merging bioinspired nanocomposite design with RTP materials contributes to overcoming the inherent limitations of molecular design of organic RTP compounds, and allows programmable temporal features to be added into RTP materials by controlled mesostructures. This will assist in paving the way for practical applications of RTP materials as novel anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xuyang Yao
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 19Freiburg79104Germany
| | - Jie Wang
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Dejin Jiao
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Oumaima Mhirsi
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Francisco Lossada
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
| | - Lisa Chen
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Bastian Haehnle
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Alexander J. C. Kuehne
- Institute of Organic and Macromolecular ChemistryUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology130 Meilong RoadShanghai200237China
| | - Andreas Walther
- ABMS Lab‐ActiveAdaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Straße 31Freiburg79104Germany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 21Freiburg79104Germany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 19Freiburg79104Germany
- Present address:
Department of ChemistryUniversity of MainzMainz55128Germany
| |
Collapse
|
37
|
Shi C, Li F, Li Q, Zhao W, Cao Y, Zhao Q, Yuan A. B- and N-Embedded π-Conjugation Units Tuning Intermolecular Interactions and Optical Properties of Platinum(II) Complexes. Inorg Chem 2021; 60:525-534. [PMID: 33378182 DOI: 10.1021/acs.inorgchem.0c03078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of neutral and cationic platinum(II) complexes containing a B- or N-embedded π-conjugation unit has been prepared. Notably, significantly different intermolecular interactions (Pt-Pt, π-π, head to tail, and head to head) and interesting optical properties exist in these complexes, which can be attributed to the difference in spatial structures and π-electron properties between B- and N-embedded π-conjugation units. Unexpectedly, under a hypoxic atmosphere, N-embedded neutral complex PtNacac can display a distinct dual-emission with both fluorescence and phosphorescence, whereas only a single fluorescence emission was observed in the air, which is different from the B-embedded neutral complex PtBacac with only a single phosphorescence emission at any atmosphere, as well confirmed by lifetime measurement and oxygen sensing experiments. DFT calculations reveal that unusual ligand-to-metal charge transfer (LMCT) excited state character and low spin orbit coupling (SOC) elements can be found in N-embedded complexes due to the strong electron-donating ability of the N-embedded unit. Based on this, as a novel ratiometric oxygen probe with a simple structure, PtNacac can be successfully used to examine intracellular oxygen levels by monitoring both fluorescence and phosphorescence signals via ratiometric photoluminescence imaging and time-resolved luminescence imaging (TRLI) technology. This work provides a completely new idea for designing fluorescence/phosphorescence dual-emissive complexes.
Collapse
Affiliation(s)
- Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Yibo Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
38
|
Wong YS, Ng M, Yeung MCL, Yam VWW. Platinum(II)-Based Host–Guest Coordination-Driven Supramolecular Co-Assembly Assisted by Pt···Pt and π–π Stacking Interactions: A Dual-Selective Luminescence Sensor for Cations and Anions. J Am Chem Soc 2021; 143:973-982. [DOI: 10.1021/jacs.0c11162] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yip-Sang Wong
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Maggie Ng
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
39
|
Lochenie C, Insuasty A, Battisti T, Pesce L, Gardin A, Perego C, Dentinger M, Wang D, Pavan GM, Aliprandi A, De Cola L. Solvent-driven chirality for luminescent self-assembled structures: experiments and theory. NANOSCALE 2020; 12:21359-21367. [PMID: 33075118 PMCID: PMC8251519 DOI: 10.1039/d0nr04524a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
We describe, for a single platinum complex bearing a dipeptide moiety, a solvent-driven interconversion from twisted to straight micrometric assembled structures with different chirality. The photophysical and morphological properties of the aggregates have been investigated as well as the role of the media and concentration. A real-time visualization of the solvent-driven interconversion processes has been achieved by confocal microscopy. Finally, atomistic and coarse-grained simulations, providing results consistent with the experimental observations, allow to obtain a molecular-level insight into the interesting solvent-responsive behavior of this system.
Collapse
Affiliation(s)
- Charles Lochenie
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Alberto Insuasty
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Tommaso Battisti
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Mike Dentinger
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Di Wang
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland and Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France. and Institut für Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| |
Collapse
|
40
|
Solomatina AI, Slobodina AD, Ryabova EV, Bolshakova OI, Chelushkin PS, Sarantseva SV, Tunik SP. Blood-Brain Barrier Penetrating Luminescent Conjugates Based on Cyclometalated Platinum(II) Complexes. Bioconjug Chem 2020; 31:2628-2637. [DOI: 10.1021/acs.bioconjchem.0c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Aleksandra D. Slobodina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Olga I. Bolshakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
41
|
Chakraborty S, Aliprandi A, De Cola L. Multinuclear Pt II Complexes: Why Three is Better Than Two to Enhance Photophysical Properties. Chemistry 2020; 26:11007-11012. [PMID: 32329122 PMCID: PMC7496982 DOI: 10.1002/chem.202001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 01/31/2023]
Abstract
The self-assembly of platinum complexes is a well-documented process that leads to interesting changes of the photophysical and electrochemical behavior as well as to a change in reactivity of the complexes. However, it is still not clear how many metal units must interact in order to achieve the desired properties of a large assembly. This work aimed to clarify the role of the number of interacting PtII units leading to an enhancement of the spectroscopic properties and how to address inter- versus intramolecular processes. Therefore, a series of neutral multinuclear PtII complexes were synthesized and characterized, and their photophysical properties at different concentration were studied. Going from the monomer to dimers, the growth of a new emission band and the enhancement of the emission properties were observed. Upon increasing the platinum units up to three, the monomeric blue emission could not be detected anymore and a concentration independent bright-yellow/orange emission, due to the establishment of intramolecular metallophilic interactions, was observed.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Alessandro Aliprandi
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Luisa De Cola
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
- Institute for Nanotechnology (INT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
42
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020; 59:18723-18730. [PMID: 32666592 DOI: 10.1002/anie.202008383] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
43
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
44
|
Xu T, Liang C, Zheng D, Yan X, Chen Y, Chen Y, Li X, Shi Y, Wang L, Yang Z. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. NANOSCALE 2020; 12:15275-15282. [PMID: 32644059 DOI: 10.1039/d0nr00143k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nuclear delivery of anticancer drugs, particularly dual complementary anticancer drugs, can significantly improve chemotherapy efficacy. However, successful examples are rare. We reported a novel dual anticancer drug-based nanomedicine with nuclear accumulation properties. The nanomedicine was formed by chelation between a drug peptide amphiphile Rh-GFFYERGD (Rh represents Rhein, 1,8-dihydroxy-3-carboxy anthraquinonea) and cisplatinum (Pt). A single molecule of the drug peptide amphiphile could chelate up to 8 equiv. of cisplatinum in the resulting nanofibers. The nanofibers with a 1 : 4 ratio of Rh-GFFYERGD to cisplatinum demonstrated remarkable cellular uptake, and more significantly, superior nuclear accumulation properties. Additionally, the nanofibers could also bind to the DNA molecule more efficiently than those formed by the drug peptide amphiphile. Thus the nanofibers exhibited excellent anticancer properties both in vitro and in vivo. We envision a significant therapeutic potential of the dual anticancer drug-based nanomedicine with cisplatinum in cancer.
Collapse
Affiliation(s)
- Tengyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|