1
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Chattaraj A, Mishra V, Mishra Y. Carbon Nanotubes in the Diagnosis and Treatment of Ovarian Cancer. Indian J Microbiol 2025; 65:538-553. [PMID: 40371046 PMCID: PMC12069779 DOI: 10.1007/s12088-024-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/28/2024] [Indexed: 05/16/2025] Open
Abstract
One of the most serious gynecological diseases in the world is ovarian cancer (OC). These days, the majority of patients are identified at an advanced stage (III or IV), with subpar diagnosis resulting in a return of the illness. Conventional medicines fail as a result of issues with early illness identification and treatment processing, including issues with dosage delivery, side effects, and treatment resistance. The carbon nanotube (CNT)-based drug delivery systems for specific OC therapy are highlighted in this review. These systems have several advantages against free drugs, including nontoxicity, biological compatibility, high biodegradability, increased therapeutic impact, and non-inflammatory effects. Crucially, functionalized CNTs with particular ligands like cancer antigen (CA125), Human epididymis protein 4 (HE4), Mucin 1, and folic acid (FA) allow for selective targeting of OC and ultimately increase therapeutic potential in comparison to their nonfunctionalized counterparts. This review focused on the potential applications of CNTs in the detection and treatment of OC, as well as their present status and future clinical developments. Graphical Abstract
Collapse
Affiliation(s)
- Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
3
|
Schrage CA, Galonska P, Metternich JT, Kruss S. Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes. J Phys Chem Lett 2025; 16:1573-1581. [PMID: 39904739 DOI: 10.1021/acs.jpclett.4c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores that can be chemically functionalized to create biosensors. Numerous noncovalent approaches were developed to detect analytes, but these design concepts can be susceptible to nonspecific binding and reduced stability. In contrast, covalent modification of SWCNTs with quantum defects can be utilized to tune their fluorescence properties and enable new molecular recognition concepts. Here, we present and assess four different synthetic pathways/sequences to modify SWCNTs covalently with both sp3 quantum defects and DNA-based guanine defects. We find that it is possible to create two defect types without disrupting the optical properties or chemical stability. Interestingly, the emission peak associated with sp3 defects (E11*) shifts around 3 nm when combined with guanine defects, indicating a coupling between the two defect types. However, it is far lower than the red-shift in bandgap-related emission (E11) by guanine quantum defects (40 nm). We furthermore demonstrate that combinations of defects can be used for (bio)sensing. In summary, the combination of multiple quantum defect types in SWCNTs provides a platform for multifunctional biosensors and a new design space that can be explored.
Collapse
Affiliation(s)
- C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Phillip Galonska
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Justus T Metternich
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| |
Collapse
|
4
|
Galindo JM, Merino S, Herrero MA. Advanced Hydrogels: Enhancing Tissue Bioengineering with RGD Peptides and Carbon Nanomaterials. ChemMedChem 2025; 20:e202400587. [PMID: 39446356 PMCID: PMC11793852 DOI: 10.1002/cmdc.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
The advancement of tissue engineering (TE) is driven by the development of scaffolds that mimic the mechanical, spatial, and biological environment of the extracellular matrix (ECM), crucial for regulating cell behavior and tissue repair. Hydrogels, 3D networks of polymer chains, are particularly suited for TE due to their high biocompatibility, ability to mimic tissue water content, facilitate cell migration, sustain growth factor release, and offer controllable physical properties. However, hydrogels mimicking the ECM often face challenges related to cell adhesion due to the absence of specific receptors. This issue can be addressed by incorporating ECM components into the polymer matrix, such as the peptide sequence arginine-glycine-aspartic acid (RGD), known for its role in cell adhesion. Additionally, carbon nanomaterials (CNMs) offer unique physicochemical properties that can improve scaffold-cell interactions. Despite the potential benefits, there are limited reports on their combination. RGD-CNM hydrogels enable a more accurate emulation of the natural cellular environment, enhancing tissue engineering applications. This hybrid approach may promote robust cell adhesion along with exceptional mechanical and electrical properties. This review outlines the potential benefits of these hybrid scaffolds and their synergistic potential, aiming to inspire new research directions in this innovative field.
Collapse
Affiliation(s)
- Josué M. Galindo
- Departamento de Química InorgánicaOrgánica y BioquímicaFacultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla-La Mancha13071Ciudad RealSpain
- Instituto Regional de Investigación Científica Aplicada (IRICA)UCLM13071Ciudad RealSpain
| | - Sonia Merino
- Departamento de Química InorgánicaOrgánica y BioquímicaFacultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla-La Mancha13071Ciudad RealSpain
- Instituto Regional de Investigación Científica Aplicada (IRICA)UCLM13071Ciudad RealSpain
| | - M. Antonia Herrero
- Departamento de Química InorgánicaOrgánica y BioquímicaFacultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla-La Mancha13071Ciudad RealSpain
- Instituto Regional de Investigación Científica Aplicada (IRICA)UCLM13071Ciudad RealSpain
| |
Collapse
|
5
|
Sun Y, Zhou Y, Rehman M, Wang YF, Guo S. Protein Corona of Nanoparticles: Isolation and Analysis. CHEM & BIO ENGINEERING 2024; 1:757-772. [PMID: 39974182 PMCID: PMC11792916 DOI: 10.1021/cbe.4c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 02/21/2025]
Abstract
Nanoparticles entering biological systems or fluids inevitably adsorb biomolecules, such as protein, on their surfaces, forming a protein corona. Ensuing, the protein corona endows nanoparticles with a new biological identity and impacts the interaction between the nanoparticles and biological systems. Hence, the development of reliable techniques for protein corona isolation and analysis is key for understanding the biological behaviors of nanoparticles. First, this review systematically outlines the approach for isolating the protein corona, including centrifugation, magnetic separation, size exclusion chromatography, flow-field-flow fractionation, and other emerging methods. Next, we review the qualitative and quantitative characterization methods of the protein corona. Finally, we underscore the necessary steps to advance the efficiency and fidelity of protein corona isolation and characterization on nanoparticle surfaces. We anticipate that these insights into protein corona isolation and characterization methodologies will profoundly influence the development of technologies aimed at elucidating bionano interactions and the role of protein corona in various biomedical applications.
Collapse
Affiliation(s)
- Yinuo Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Zhou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mubashar Rehman
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Feng Wang
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Shutao Guo
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2316028. [PMID: 39677986 PMCID: PMC11636629 DOI: 10.1002/adfm.202316028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 12/17/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H2O2) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H2O2, confirm the nanosensor can image H2O2 in real-time, and assess the nanosensor's selectivity for H2O2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
Affiliation(s)
- Francis Ledesma
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Dabin Yim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Alison Lui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Aishwarya Murali
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Kaur R, Bhardwaj G, Singh N, Kaur N. Geometric Transformation of Modified Multiwalled Carbon Nanotubes-Based Heterometallic Nanostructured Material: A Model for the Electrochemical Discrimination of Insecticides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12911-12924. [PMID: 38691550 DOI: 10.1021/acs.langmuir.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Multifunctional carbon-based materials exhibit a large number of unprecedented active sites via an electron transfer process and act as a desired platform for exploring high-performance electroactive material. Herein, we exemplify the holistic design of a heterometallic nanostructured material (MWCNTs@KR-6/Mn/Sn/Pb) formed by the integration of metals (Mn2+, Sn2+, and Pb2+) and a dipodal ligand (KR-6) at the surface of multiwalled carbon nanotubes (MWCNTs). First, MWCNTs@KR-6 was readily synthesized via a noncovalent approach, which was further sequentially doped by Mn2+, Sn2+, and Pb2+ to give MWCNTs@KR-6/Mn/Sn/Pb. The designed material showed excellent electrochemical activity for the discrimination of insecticides belonging to structurally different classes. In contrast to that of the individual building components, both the stability and electrochemical activity of heterometallic nanostructured material were remarkably enhanced, resulting in a magnificent electrochemical performance of the developed material. Hence, the current work reports a comprehensive synthetic approach for MWCNTs@KR-6/Mn/Sn/Pb synthesis by synergizing unique properties of the heterometallic complex with MWCNTs. This work also offers a new insight into the design of multifunctional carbon-based materials for discrimination of different analytes on the basis of their redox potential.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Geetika Bhardwaj
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India
| | - Navneet Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
8
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
9
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Nishitani S, Tran T, Puglise A, Yang S, Landry MP. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202311476. [PMID: 37990059 PMCID: PMC11003487 DOI: 10.1002/anie.202311476] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Continuous and non-invasive glucose monitoring and imaging is important for disease diagnosis, treatment, and management. However, glucose monitoring remains a technical challenge owing to the dearth of tissue-transparent glucose sensors. In this study, we present the development of near-infrared fluorescent single-walled carbon nanotube (SWCNT) based nanosensors directly functionalized with glucose oxidase (GOx) capable of immediate and reversible glucose imaging in biological fluids and tissues. We prepared GOx-SWCNT nanosensors by facile sonication of SWCNT with GOx in a manner that-surprisingly-does not compromise the ability of GOx to detect glucose. Importantly, we find by using denatured GOx that the fluorescence modulation of GOx-SWCNT is not associated with the catalytic oxidation of glucose but rather triggered by glucose-GOx binding. Leveraging the unique response mechanism of GOx-SWCNT nanosensors, we developed catalytically inactive apo-GOx-SWCNT that enables both sensitive and reversible glucose imaging, exhibiting a ΔF/F0 of up to 40 % within 1 s of exposure to glucose without consuming the glucose analyte. We finally demonstrate the potential applicability of apo-GOx-SWCNT in biomedical applications by glucose quantification in human plasma and glucose imaging in mouse brain slices.
Collapse
Affiliation(s)
- Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Tiffany Tran
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Andrew Puglise
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Sounghyun Yang
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), 94720, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, 94720, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, 94158, San Francisco, CA, USA
| |
Collapse
|
11
|
Rosenberg DJ, Cunningham FJ, Hubbard JD, Goh NS, Wang JWT, Nishitani S, Hayman EB, Hura GL, Landry MP, Pinals RL. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry. J Am Chem Soc 2024; 146:386-398. [PMID: 38158616 DOI: 10.1021/jacs.3c09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)n-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT)n ssDNA oligomer lengths (n = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT)6, adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 ± 0.3 nm), compared to the longer (GT)15 oligomer (most probable 5'-to-5' distance of 14.3 ± 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey Wei-Ting Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Emily B Hayman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rebecca L Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571773. [PMID: 38168430 PMCID: PMC10760104 DOI: 10.1101/2023.12.14.571773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H 2 O 2 ) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H 2 O 2 , confirm the nanosensor can image H 2 O 2 in real-time, and assess the nanosensor's selectivity for H 2 O 2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
|
13
|
Wu Q, Niu M, Zhou C, Wang Y, Xu J, Shi L, Xiong H, Feng N. Formation and detection of biocoronas in the food industry and their fate in the human body. Food Res Int 2023; 174:113566. [PMID: 37986519 DOI: 10.1016/j.foodres.2023.113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The rapid advancement of nanotechnology has opened up new avenues for applications in all stages of the food industry. Over the past decade, extensive research has emphasized that when nanoparticles (NPs) enter organisms, they spontaneously adsorbed biomolecules, leading to the formation of biocorona. This paper provided a detailed review of the process of biocorona formation in the food industry, including their classification and influencing factors. Additionally, various characterization methods to investigated the morphology and structure of biocoronas were introduced. As a real state of food industry nanoparticles in biological environments, the biocorona causes structural transformations of biomolecules bound to NPs, thus affecting their fate in the body. It can either promote or inhibit enzyme activity in the human environment, and may also positively or negatively affect the cellular uptake and toxicity of NPs. Since NPs present in the food industry will inevitably enter the human body, further investigations on biocoronas will offer valuable insights and perspectives on the safety of incorporating more NPs into the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chen Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yaxiong Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - He Xiong
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
14
|
Hendler-Neumark A, Wulf V, Bisker G. Single-Walled Carbon Nanotube Sensor Selection for the Detection of MicroRNA Biomarkers for Acute Myocardial Infarction as a Case Study. ACS Sens 2023; 8:3713-3722. [PMID: 37700465 PMCID: PMC10616859 DOI: 10.1021/acssensors.3c00633] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding short ribonucleic acid sequences that take part in many cellular and biological processes. Recent studies have shown that altered expression of miRNAs is involved in pathological processes, and they can thus be considered biomarkers for the early detection of various diseases. Here, we demonstrate a selection and elimination process of fluorescent single-walled carbon nanotube (SWCNT) sensors for miRNA biomarkers based on RNA-DNA hybridization with a complementary DNA recognition unit bound to the SWCNT surface. We use known miRNA biomarkers for acute myocardial infarction (AMI), commonly known as a heart attack, as a case study. We have selected five possible miRNA biomarkers which are selective and specific to AMI and tested DNA-SWCNT sensor candidates with the target DNA and RNA sequences in different environments. Out of these five miRNA sensors, three could recognize the complementary DNA or RNA sequence in a buffer, showing fluorescence modulation of the SWCNT in response to the target sequence. Out of the three working sensors in buffer, only one could function in serum and was selected for further testing. The chosen sensor, SWCNT-miDNA208a, showed high specificity and selectivity toward the target sequence, with better performance in serum compared to a buffer environment. The SWCNT sensor selection pipeline highlights the importance of testing sensor candidates in the appropriate environment and can be extended to other libraries of biomarkers.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Steiner ST, Maisuls I, Junker A, Fritz G, Faust A, Strassert CA. Concerning the photophysics of fluorophores towards tailored bioimaging compounds: a case study involving S100A9 inflammation markers. Photochem Photobiol Sci 2023; 22:2093-2104. [PMID: 37303026 DOI: 10.1007/s43630-023-00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
A full understanding concerning the photophysical properties of a fluorescent label is crucial for a reliable and predictable performance in biolabelling applications. This holds true not only for the choice of a fluorophore in general, but also for the correct interpretation of data, considering the complexity of biological environments. In the frame of a case study involving inflammation imaging, we report the photophysical characterization of four fluorescent S100A9-targeting compounds in terms of UV-vis absorption and photoluminescence spectroscopy, fluorescence quantum yields (ΦF) and excited state lifetimes (τ) as well as the evaluation of the radiative and non-radiative rate constants (kr and knr, respectively). The probes were synthesized based on a 2-amino benzimidazole-based lead structure in combination with commercially available dyes, covering a broad color range from green (6-FAM) over orange (BODIPY-TMR) to red (BODIPY-TR) and near-infrared (Cy5.5) emission. The effect of conjugation with the targeting structure was addressed by comparison of the probes with their corresponding dye-azide precursors. Additionally, the 6-FAM and Cy5.5 probes were measured in the presence of murine S100A9 to determine whether protein binding influences their photophysical properties. An interesting rise in ΦF upon binding of 6-FAM-SST177 to murine S100A9 enabled the determination of its dissociation equilibrium constant, reaching up to KD = 324 nM. This result gives an outlook for potential applications of our compounds in S100A9 inflammation imaging and fluorescence assay developments. With respect to the other dyes, this study demonstrates how diverse microenvironmental factors can severely impair their performance while rendering them poor performers in biological media, showing that a preliminary photophysical screening is key to assess the suitability of a particular luminophore.
Collapse
Affiliation(s)
- Simon T Steiner
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany
| | - Anna Junker
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Günter Fritz
- Cellular Microbiology, Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany.
| |
Collapse
|
16
|
Nadeem A, Kindopp A, Wyllie I, Hubert L, Joubert J, Lucente S, Randall E, Jena PV, Roxbury D. Enhancing Intracellular Optical Performance and Stability of Engineered Nanomaterials via Aqueous Two-Phase Purification. NANO LETTERS 2023; 23:6588-6595. [PMID: 37410951 PMCID: PMC11068083 DOI: 10.1021/acs.nanolett.3c01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Supramolecular hybrids of DNA and single-walled carbon nanotubes (SWCNTs) have been introduced in numerous biosensing applications due to their unique optical properties. Recent aqueous two-phase (ATP) purification methods for SWCNTs have gained popularity by introducing specificity and homogeneity into the sensor design process. Using murine macrophages probed by near-infrared and Raman microscopies, we show that ATP purification increases the retention time of DNA-SWCNTs within cells while simultaneously enhancing the optical performance and stability of the engineered nanomaterial. Over a period of 6 h, we observe 45% brighter fluorescence intensity and no significant change in emission wavelength of ATP-purified DNA-SWCNTs relative to as-dispersed SWCNTs. These findings provide strong evidence of how cells differentially process engineered nanomaterials depending on their state of purification, lending to the future development of more robust and sensitive biosensors with desirable in vivo optical parameters using surfactant-based ATP systems with a subsequent exchange to biocompatible functionalization.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ian Wyllie
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lauren Hubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - James Joubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sophie Lucente
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ewelina Randall
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
17
|
Portilla Y, Mulens-Arias V, Daviu N, Paradela A, Pérez-Yagüe S, Barber DF. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478159 PMCID: PMC10401511 DOI: 10.1021/acsami.3c05555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Upon contact with biological fluids like serum, a protein corona (PC) complex forms on iron oxide nanoparticles (IONPs) in physiological environments and the proteins it contains influence how IONPs act in biological systems. Although the biological identity of PC-IONP complexes has often been studied in vitro and in vivo, there have been inconsistent results due to the differences in the animal of origin, the type of biological fluid, and the physicochemical properties of the IONPs. Here, we identified differences in the PC composition when it was derived from the sera of three species (bovine, murine, or human) and deposited on IONPs with similar core diameters but with different coatings [dimercaptosuccinic acid (DMSA), dextran (DEX), or 3-aminopropyl triethoxysilane (APS)], and we assessed how these differences influenced their effects on macrophages. We performed a comparative proteomic analysis to identify common proteins from the three sera that adsorb to each IONP coating and the 10 most strongly represented proteins in PCs. We demonstrated that the PC composition is dependent on the origin of the serum rather than the nature of the coating. The PC composition critically affects the interaction of IONPs with macrophages in self- or non-self identity models, influencing the activation and polarization of macrophages. However, such effects were more consistent for DMSA-IONPs. As such, a self biological identity of IONPs promotes the activation and M2 polarization of murine macrophages, while a non-self biological identity favors M1 polarization, producing larger quantities of ROS. In a human context, we observed the opposite effect, whereby a self biological identity of DMSA-IONPs promotes a mixed M1/M2 polarization with an increase in ROS production. Conversely, a non-self biological identity of IONPs provides nanoparticles with a stealthy character as no clear effects on human macrophages were evident. Thus, the biological identity of IONPs profoundly affects their interaction with macrophages, ultimately defining their biological impact on the immune system.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
18
|
Qu S, Qiao Z, Zhong W, Liang K, Jiang X, Shang L. Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44147-44157. [PMID: 36153958 DOI: 10.1021/acsami.2c11874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Zihan Qiao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
19
|
Marin D, Marchesan S. Carbon Graphitization: Towards Greener Alternatives to Develop Nanomaterials for Targeted Drug Delivery. Biomedicines 2022; 10:1320. [PMID: 35740342 PMCID: PMC9220131 DOI: 10.3390/biomedicines10061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon nanomaterials have attracted great interest for their unique physico-chemical properties for various applications, including medicine and, in particular, drug delivery, to solve the most challenging unmet clinical needs. Graphitization is a process that has become very popular for their production or modification. However, traditional conditions are energy-demanding; thus, recent efforts have been devoted to the development of greener routes that require lower temperatures or that use waste or byproducts as a carbon source in order to be more sustainable. In this concise review, we analyze the progress made in the last five years in this area, as well as in their development as drug delivery agents, focusing on active targeting, and conclude with a perspective on the future of the field.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
20
|
Gravely M, Kindopp A, Hubert L, Card M, Nadeem A, Miller C, Roxbury D. Aggregation Reduces Subcellular Localization and Cytotoxicity of Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19168-19177. [PMID: 35438957 PMCID: PMC11068084 DOI: 10.1021/acsami.2c02238] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The non-covalent biomolecular functionalization of fluorescent single-walled carbon nanotubes (SWCNTs) has resulted in numerous in vitro and in vivo sensing and imaging applications due to many desirable optical properties. In these applications, it is generally presumed that pristine, singly dispersed SWCNTs interact with and enter live cells at the so-called nano-biointerface, for example, the cell membrane. Despite numerous fundamental studies published on this presumption, it is known that nanomaterials have the propensity to aggregate in protein-containing environments before ever contacting the nano-biointerface. Here, using DNA-functionalized SWCNTs with defined degrees of aggregation as well as near-infrared hyperspectral microscopy and toxicological assays, we show that despite equal rates of internalization, initially aggregated SWCNTs do not further accumulate within individual subcellular locations. In addition to subcellular accumulations, SWCNTs initially with a low degree of aggregation can induce significant deleterious effects in various long-term cytotoxicity and real-time proliferation assays, which are markedly different when compared to those of SWCNTs that are initially aggregated. These findings suggest the importance of the aggregation state as a critical component related to intracellular processing and toxicological response of engineered nanomaterials.
Collapse
Affiliation(s)
- Mitchell Gravely
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lauren Hubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Christopher Miller
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
21
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Kim M, Chen C, Wang P, Mulvey JJ, Yang Y, Wun C, Antman-Passig M, Luo HB, Cho S, Long-Roche K, Ramanathan LV, Jagota A, Zheng M, Wang Y, Heller DA. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat Biomed Eng 2022; 6:267-275. [PMID: 35301449 PMCID: PMC9108893 DOI: 10.1038/s41551-022-00860-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.
Collapse
Affiliation(s)
- Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Joseph J Mulvey
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoona Yang
- Departments of Bioengineering, and Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | | | | - Hong-Bin Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Sun Cho
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Anand Jagota
- Departments of Bioengineering, and Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
23
|
Jackson CT, Wang JW, González-Grandío E, Goh NS, Mun J, Krishnan S, Geyer FL, Keller H, Ebert S, Molawi K, Kaiser N, Landry MP. Polymer-Conjugated Carbon Nanotubes for Biomolecule Loading. ACS NANO 2022; 16:1802-1812. [PMID: 34935350 DOI: 10.1101/2021.07.22.453422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.
Collapse
Affiliation(s)
- Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jaewan Mun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sejal Krishnan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Nadine Kaiser
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
24
|
Jackson CT, Wang JW, González-Grandío E, Goh NS, Mun J, Krishnan S, Geyer FL, Keller H, Ebert S, Molawi K, Kaiser N, Landry MP. Polymer-Conjugated Carbon Nanotubes for Biomolecule Loading. ACS NANO 2022; 16:1802-1812. [PMID: 34935350 PMCID: PMC10461756 DOI: 10.1021/acsnano.1c06343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.
Collapse
Affiliation(s)
- Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jaewan Mun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sejal Krishnan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Nadine Kaiser
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. NATURE NANOTECHNOLOGY 2022. [PMID: 34811553 DOI: 10.1101/2021.03.17.435888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. NATURE NANOTECHNOLOGY 2022; 17:197-205. [PMID: 34811553 PMCID: PMC10519342 DOI: 10.1038/s41565-021-01018-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
27
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
28
|
Ouassil N, Pinals RL, Del Bonis-O’Donnell JT, Wang JW, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. SCIENCE ADVANCES 2022; 8:eabm0898. [PMID: 34995109 PMCID: PMC8741178 DOI: 10.1126/sciadv.abm0898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Engineered nanoparticles are advantageous for biotechnology applications including biomolecular sensing and delivery. However, testing compatibility and function of nanotechnologies in biological systems requires a heuristic approach, where unpredictable protein corona formation prevents their effective implementation. We develop a random forest classifier trained with mass spectrometry data to identify proteins that adsorb to nanoparticles based solely on the protein sequence (78% accuracy, 70% precision). We model proteins that populate the corona of a single-walled carbon nanotube (SWCNT)–based nanosensor and study the relationship between the protein’s amino acid–based properties and binding capacity. Protein features associated with increased likelihood of SWCNT binding include high content of solvent-exposed glycines and nonsecondary structure–associated amino acids. To evaluate its predictive power, we apply the classifier to identify proteins with high binding affinity to SWCNTs, with experimental validation. The developed classifier provides a step toward undertaking the otherwise intractable problem of predicting protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Nicholas Ouassil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L. Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey W. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
29
|
Ghalandari B, Yu Y, Ghorbani F, Warden AR, Ahmad KZ, Sang X, Huang S, Zhang Y, Su W, Divsalar A, Ding X. Polydopamine nanospheres coated with bovine serum albumin permit enhanced cell differentiation: fundamental mechanism and practical application for protein coating formation. NANOSCALE 2021; 13:20098-20110. [PMID: 34846416 DOI: 10.1039/d1nr07469e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein coating is a strategy for modifying and improving the surface functional properties of nanomaterials. However, the underlying mechanism behind protein coating formation, which is essential for its practical applications, remains largely unknown. Herein, we investigate the fundamental molecular mechanism of protein coating formation. Polydopamine nanospheres (PDANS) coated with bovine serum albumin (BSA) are examined in this study due to their wide biomedical potential. Our results demonstrate that BSAs can flexibly bind to PDANS and maintain their structural dynamicity. Our findings unveil that regular structure formation arises from BSAs lateral interactions via electrostatic forces. Notably, the protein coating modified PDANS surface enhances cell adhesion and proliferation as well as osteogenic differentiation. Such an enhancement is attributed to complementary surface properties provided by the dynamic PDANS-BSA complex and regular structure caused by BSA-BSA interactions in protein coating formation. This study provides a fundamental understanding of the molecular mechanism of protein coating formation, which facilitates the further development of functional protein-coated nanomaterials and guides the bioengineering decision making for biomedical applications, especially in bone tissue engineering.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Youyi Yu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xiao Sang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Shiyi Huang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
30
|
Hofferber E, Meier J, Herrera N, Stapleton J, Calkins C, Iverson N. Detection of single walled carbon nanotube based sensors in a large mammal. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102489. [PMID: 34740870 DOI: 10.1016/j.nano.2021.102489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
High resolution, rapid, and precise detection of biological analytes related to disease and infection is currently the focus of many researchers. Better biosensors could lead to earlier detection, more avenues of intervention, and higher efficacy of therapeutics, which would lead to better outcomes for all patients. One class of biosensors, single walled carbon nanotubes, is unique due to their nanoscale resolution, single molecule sensitivity, and reversibility for long term applications. While these biosensors have been successful in rodent models, to date, no study has shown successful sensor detection in a large animal. In this study, we show the first successful signal detection of single walled carbon nanotube-based sensors in a large mammal model. Using a relatively simple and cost-effective system, we were able to detect signals in nearly 70% of the sheep used in the study, marking an important steppingstone towards the use of SWNT-based sensors for clinical diagnostics.
Collapse
Affiliation(s)
- Eric Hofferber
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Jakob Meier
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Nicolas Herrera
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Joseph Stapleton
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Chris Calkins
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Nicole Iverson
- Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
31
|
Serum apolipoprotein A-I depletion is causative to silica nanoparticles-induced cardiovascular damage. Proc Natl Acad Sci U S A 2021; 118:2108131118. [PMID: 34716267 DOI: 10.1073/pnas.2108131118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
The rapid development of nanotechnology has greatly benefited modern science and engineering and also led to an increased environmental exposure to nanoparticles (NPs). While recent research has established a correlation between the exposure of NPs and cardiovascular diseases, the intrinsic mechanisms of such a connection remain unclear. Inhaled NPs can penetrate the air-blood barrier from the lung to systemic circulation, thereby intruding the cardiovascular system and generating cardiotoxic effects. In this study, on-site cardiovascular damage was observed in mice upon respiratory exposure of silica nanoparticles (SiNPs), and the corresponding mechanism was investigated by focusing on the interaction of SiNPs and their encountered biomacromolecules en route. SiNPs were found to collect a significant amount of apolipoprotein A-I (Apo A-I) from the blood, in particular when the SiNPs were preadsorbed with pulmonary surfactants. While the adsorbed Apo A-I ameliorated the cytotoxic and proinflammatory effects of SiNPs, the protein was eliminated from the blood upon clearance of the NPs. However, supplementation of Apo A-I mimic peptide mitigated the atherosclerotic lesion induced by SiNPs. In addition, we found a further declined plasma Apo A-I level in clinical silicosis patients than coronary heart disease patients, suggesting clearance of SiNPs sequestered Apo A-I to compromise the coronal protein's regular biological functions. Together, this study has provided evidence that the protein corona of SiNPs acquired in the blood depletes Apo A-I, a biomarker for prediction of cardiovascular diseases, which gives rise to unexpected toxic effects of the nanoparticles.
Collapse
|
32
|
Tan X, Welsher K. Particle‐by‐Particle In Situ Characterization of the Protein Corona via Real‐Time 3D Single‐Particle‐Tracking Spectroscopy**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry Duke University Durham NC 27708 USA
| | - Kevin Welsher
- Department of Chemistry Duke University Durham NC 27708 USA
| |
Collapse
|
33
|
Tan X, Welsher K. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*. Angew Chem Int Ed Engl 2021; 60:22359-22367. [PMID: 34015174 PMCID: PMC8763617 DOI: 10.1002/anie.202105741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/05/2022]
Abstract
Nanoparticles (NPs) adsorb proteins when exposed to biological fluids, forming a dynamic protein corona that affects their fate in biological environments. A comprehensive understanding of the protein corona is lacking due to the inability of current techniques to precisely measure the full corona in situ at the single-particle level. Herein, we introduce a 3D real-time single-particle tracking spectroscopy to "lock-on" to single freely diffusing polystyrene NPs and probe their individual protein coronas, primarily using bovine serum albumin (BSA) as a model system. The fluorescence signals and diffusive motions of the tracked NPs enable quantification of the "hard corona" using mean-squared displacement analysis. Critically, this method's particle-by-particle nature enabled a lock-in-type frequency filtering approach to extract the full protein corona, despite the typically confounding effect of high background signal from unbound proteins. From these results, the dynamic in situ full protein corona is observed to contain twice the number of proteins compared to the ex situ-measured "hard" protein corona.
Collapse
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Kevin Welsher
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
34
|
Hendler-Neumark A, Wulf V, Bisker G. In vivo imaging of fluorescent single-walled carbon nanotubes within C. elegans nematodes in the near-infrared window. Mater Today Bio 2021; 12:100175. [PMID: 34927042 PMCID: PMC8649898 DOI: 10.1016/j.mtbio.2021.100175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) nematodes serve as a model organism for eukaryotes, especially due to their genetic similarity. Although they have many advantages like their small size and transparency, their autofluorescence in the entire visible wavelength range poses a challenge for imaging and tracking fluorescent proteins or dyes using standard fluorescence microscopy. Herein, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) are utilized for in vivo imaging within the gastrointestinal track of C. elegans. The SWCNTs are biocompatible, and do not affect the worms' viability nor their reproduction ability. The worms do not show any autofluorescence in the NIR range, thus enabling the spectral separation between the SWCNT NIR fluorescence and the strong autofluorescence of the worm gut granules. The worms are fed with ssDNA-SWCNT which are visualized mainly in the intestine lumen. The NIR fluorescence is used in vivo to track the contraction and relaxation in the area of the pharyngeal valve at the anterior of the terminal bulb. These biocompatible, non-photobleaching, NIR fluorescent nanoparticles can advance in vivo imaging and tracking within C. elegans and other small model organisms by overcoming the signal-to-noise challenge stemming from the wide-range visible autofluorescence.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
35
|
Bakh NA, Gong X, Lee MA, Jin X, Koman VB, Park M, Nguyen FT, Strano MS. Transcutaneous Measurement of Essential Vitamins Using Near-Infrared Fluorescent Single-Walled Carbon Nanotube Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100540. [PMID: 34176216 DOI: 10.1002/smll.202100540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.
Collapse
Affiliation(s)
- Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
36
|
Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021; 26:4084. [PMID: 34279424 PMCID: PMC8271590 DOI: 10.3390/molecules26134084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Costas Charitidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 157 80 Athens, Greece;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
37
|
DNA-Directed Assembly of Carbon Nanotube-Protein Hybrids. Biomolecules 2021; 11:biom11070955. [PMID: 34209628 PMCID: PMC8301810 DOI: 10.3390/biom11070955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Here, we report the controlled assembly of SWCNT–GFP hybrids employing DNA as a linker. Two distinct, enriched SWCNTs chiralities, (6,5), (7,6), and an unsorted SWCNT solution, were selectively functionalized with DNA and hybridized to a complementary GFPDNA conjugate. Atomic force microscopy images confirmed that GFP attachment occurred predominantly at the terminal ends of the nanotubes, as designed. The electronic coupling of the proteins to the nanotubes was confirmed via in-solution fluorescence spectroscopy, that revealed an increase in the emission intensity of GFP when linked to the CNTs.
Collapse
|
38
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
39
|
Qin C, Hu C, Yu A, Lai G. Fe 3O 4@polydopamine and Exo III-assisted homogeneous biorecognition reaction for convenient and ultrasensitive detection of kanamycin antibiotic. Analyst 2021; 146:1414-1420. [PMID: 33404555 DOI: 10.1039/d0an02187c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein, we report a Fe3O4@polydopamine (PDA) nanocomposite and exonuclease III (Exo III)-assisted homogeneous fluorescence biosensing method for ultrasensitive detection of kanamycin (Kana) antibiotic. A hairpin DNA containing the Kana-aptamer sequence (HP) was first designed for the highly specific biorecognition of the target analyte. Because of the aptamer biorecognition-induced structural change of HP and the highly effective catalyzed reaction of Exo III, a large amount of fluorophore labels were released from the designed fluorescence DNA probe. During the homogeneous reaction process, the Exo III-assisted dual recycling significantly amplified the fluorescence signal output. Moreover, the excessive probes were easily adsorbed and separated by the Fe3O4@PDA nanocomposite, which decreased the background signal and increased the signal-to-noise ratio. These strategies result in the excellent analytical performance of the method, including a very low detection limit of 0.023 pg mL-1 and a very wide linear range of six orders of magnitude. In addition, this method has convenient operation, excellent selectivity, repeatability and satisfactory reliability, and does not involve the design and utilization of complicated DNA sequences. Thus, it exhibits a promising prospect for practical applications.
Collapse
Affiliation(s)
- Chuanying Qin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Cong Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
40
|
Zhang L, Wei W, Liu Z, Liu X, Song E, Song Y. Dual effects of fibrinogen decoration on the tuning of silica nanoparticles-induced autophagic response: The implication of sedimentation and internalization. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124467. [PMID: 33187794 DOI: 10.1016/j.jhazmat.2020.124467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Due to the blooming development of nanotechnology, the further understanding of nanomaterials-induced toxicity has been demanded. Following their introduction into a biological matrix, the surface of nanoparticles (NPs) is covered by protein layer, namely corona, which imparts a new biological identity to NPs. Here, we showed that fibrinogen (Fg), but not albumin (BSA) or hemoglobin (Hb), decoration on the surface of silica nanoparticles (SiO2 NPs) ameliorate their pro-autophagic activity in non-phagocytic cells. Surprisingly, this effect of Fg was compromised in phagocytic cells. Further mechanistic investigation suggested coronal Fg has dual effects on the tuning of SiO2 NPs-induced autophagic response. First, Fg decoration blocks SiO2 NPs sedimentation through stabilize SiO2 NPs suspension; secondly, Fg coverage inhibits SiO2 NPs' cellular internalization. These findings provided important insights into the understanding of NPs-corona complexes behaviors and indicate future directions for the investigation of corona-mediated biological activities.
Collapse
Affiliation(s)
- Lihui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China; School of Pharmaceutical Sciences, Tongren Polytechnic College, Tongren, Guizhou, 554300, China
| | - Wei Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Xuting Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
41
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
42
|
Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE, Kuo L, Chuang YC, Cheng YW, Sun HY, Landry MP. Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors. NANO LETTERS 2021; 21:2272-2280. [PMID: 33635655 PMCID: PMC10493163 DOI: 10.1021/acs.nanolett.1c00118] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Francis Ledesma
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Nicole Navarro
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York 12159, United States
| | - Yung-Chun Chuang
- Leadgene Biomedical Inc., Tainan 71042, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | - Hung-Yu Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020; 59:23668-23677. [PMID: 32931615 PMCID: PMC7736064 DOI: 10.1002/anie.202008175] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Indexed: 12/15/2022]
Abstract
When nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.
Collapse
Affiliation(s)
- Rebecca L. Pinals
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Darwin Yang
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Daniel J. Rosenberg
- D.J. Rosenberg Graduate Group in Biophysics University of California, Berkeley Berkeley, California 94720, United States
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Tanya Chaudhary
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Andrew R. Crothers
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
| | - Michal Hammel
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Markita P. Landry
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
- Professor M.P. Landry Innovative Genomics Institute (IGI) Berkeley, California 94720, United States
- Professor M.P. Landry Chan-Zuckerberg Biohub San Francisco, California 94158, United States
| |
Collapse
|
44
|
Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE, Kuo L, Chuang YC, Cheng YW, Sun HY, Landry MP. Rapid SARS-CoV-2 Detection by Carbon Nanotube-Based Near-Infrared Nanosensors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173881 DOI: 10.1101/2020.11.02.20223404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. Presence of the SARS-CoV-2 spike protein elicits a robust, two-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism, and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection. ABSTRACT FIGURE
Collapse
|
45
|
Yang D, Yang SJ, Del Bonis-O'Donnell JT, Pinals RL, Landry MP. Mitigation of Carbon Nanotube Neurosensor Induced Transcriptomic and Morphological Changes in Mouse Microglia with Surface Passivation. ACS NANO 2020; 14:13794-13805. [PMID: 32955853 PMCID: PMC10539025 DOI: 10.1021/acsnano.0c06154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT)6-SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells. Next, we introduce a strategy to passivate (GT)6-SWCNT nanosensors with PEGylated phospholipids to improve both biocompatibility and dopamine imaging quality. We apply these passivated dopamine nanosensors to image electrically stimulated striatal dopamine release in acute mouse brain slices, and show that slices labeled with passivated nanosensors exhibit higher fluorescence response to dopamine and measure more putative dopamine release sites. Hence, this facile modification to SWCNT-based dopamine probes provides immediate improvements to both biocompatibility and dopamine imaging functionality with an approach that is readily translatable to other SWCNT-based neurotechnologies.
Collapse
Affiliation(s)
- Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
46
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rebecca L. Pinals
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Daniel J. Rosenberg
- Graduate Group in Biophysics University of California, Berkeley Berkeley California 94720 USA
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Tanya Chaudhary
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Andrew R. Crothers
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94720 USA
- Chan-Zuckerberg Biohub San Francisco California 94158 USA
| |
Collapse
|
47
|
Tao X, Chang X, Wan X, Guo Y, Zhang Y, Liao Z, Song Y, Song E. Impact of Protein Corona on Noncovalent Molecule-Gold Nanoparticle-Based Sensing. Anal Chem 2020; 92:14990-14998. [PMID: 33104346 DOI: 10.1021/acs.analchem.0c02850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticle (AuNP)-based sensors have been extensively applied for sensing or imaging. It is known that a protein shell named protein corona (PC) formed around the nanomaterials could not only block the desired function of nanomaterials but also affect their behavior, which is a hot and important issue needing consideration. Therefore, we hypothesize that the formation of PC around AuNPs could inevitably affect the AuNP-based target assay. In this work, the effects of PC on the detection results in sensors based on AuNPs were studied. Three types of noncovalent molecule-AuNP sensors including AuNP-dichlorofluorescein, AuNP-aptamer, and AuNP-antibody-DNA were constructed, and several typical proteins (bovine serum albumin, fibrinogen, hemoglobin, and β-lactoglobulin), milk, and fetal bovine serum were selected as models for the formation of PCs. This study shows that the PC could cause the loss of detection signals (up to 80%) and result in positive deviation of the measuring value compared with the true value. Moreover, the loss of detection signals could also increase the limits of detection (almost 10 times), decreasing the sensitivity of the three types of sensors, as proposed in this work compared to that without PC. Moreover, the polyethylene glycol backfilling strategy could not resolve the negative effects of PC on noncovalent molecule-AuNP sensors. The impacts of PC on detection results from noncovalent molecule-AuNP sensors would cause misdiagnosis or wasted production, which needs careful reconsideration of the AuNP-based detection in application fields like clinic diagnosis, food safety control, and so forth.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaoxi Chang
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xulin Wan
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yina Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yaqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Ziyi Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| |
Collapse
|
48
|
Pinals RL, Chio L, Ledesma F, Landry MP. Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst 2020; 145:5090-5112. [PMID: 32608460 PMCID: PMC7439532 DOI: 10.1039/d0an00633e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unpredictable and uncontrollable protein adsorption on nanoparticles remains a considerable challenge to achieving effective application of nanotechnologies within biological environments. Nevertheless, engineered nanoparticles offer unprecedented functionality and control in probing and altering biological systems. In this review, we highlight recent advances in harnessing the "protein corona" formed on nanoparticles as a handle to tune functional properties of the protein-nanoparticle complex. Towards this end, we first review nanoparticle properties that influence protein adsorption and design strategies to facilitate selective corona formation, with the corresponding characterization techniques. We next focus on literature detailing corona-mediated functionalities, including stealth to avoid recognition and sequestration while in circulation, targeting of predetermined in vivo locations, and controlled activation once localized to the intended biological compartment. We conclude with a discussion of biocompatibility outcomes for these protein-nanoparticle complexes applied in vivo. While formation of the nanoparticle-corona complex may impede our control over its use for the projected nanobiotechnology application, it concurrently presents an opportunity to create improved protein-nanoparticle architectures by exploiting natural or guiding selective protein adsorption to the nanoparticle surface.
Collapse
Affiliation(s)
- Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
49
|
Kazemi R, Potts EI, Dick JE. Quantifying Interferent Effects on Molecularly Imprinted Polymer Sensors for Per- and Polyfluoroalkyl Substances (PFAS). Anal Chem 2020; 92:10597-10605. [PMID: 32564597 DOI: 10.1021/acs.analchem.0c01565] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging as harmful environmental micropollutants. Generally, PFAS species are quantified by mass spectrometry, for which a collected sample is taken to a centralized facility. Robust techniques to quantify PFAS in the field are necessary to diagnose environmental contamination at the earliest onset of pollution. Here, we developed a molecularly imprinted polymer (MIP) electrode for the detection of perfluorooctanesulfonate (PFOS) and explored the MIP surface and the effects of interfering molecules. MIPs were formed by the anodic deposition of o-phenylenediamine (o-PD) in the presence of PFOS template molecules on a glassy carbon macroelectrode. The performance of the resulting MIP electrode was evaluated by the current obtained from the oxidation of ferrocene carboxylic acid as the electrochemical probe. The MIP electrode was able to detect PFOS with a detection limit of 0.05 nM, which is lower than the health advisory limit of 0.14 nM reported by the U.S. EPA. To better understand PFOS association into the MIP, a Langmuir binding model was developed based on the changes in electrochemical responses of the MIP. Fitting the model to the experimental data gave an association constant (KA) of 4.95 × 1012 over a PFOS concentration range of 0 to 0.05 nM. The binding isotherm of other commonly found substances in contaminated water sources such as chloride, humic acid, perfluorooctanoic acid (PFOA), and perfluorobutanesulfonate (PFBS) was also investigated. In the case of chloride and humic acid, the calculated KA values of 9.05 × 107 and 6.01 × 105, respectively, indicate relatively weak adsorption of these species on the MIP. However, PFOA, which is the carboxylate analog of PFOS, revealed a very close KA value (3.41 × 1012) to PFOS. A greater KA value (1.43 × 1013) was obtained for PFBS, which possesses the same functional group and a smaller molecular size compared to PFOS. The presented platform emphasizes the necessity to develop new strategies to make MIP sensors more specific if practical applications are to be pursued.
Collapse
Affiliation(s)
- Rezvan Kazemi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emili I Potts
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. SCIENCE ADVANCES 2020; 6:eaaz0495. [PMID: 32637592 PMCID: PMC7314522 DOI: 10.1126/sciadv.aaz0495] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
Posttranscriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. Standard plant siRNA delivery methods (Agrobacterium and viruses) involve coding siRNA into DNA vectors and are only tractable for certain plant species. Here, we develop a nanotube-based platform for direct delivery of siRNA and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes, owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes could enable a myriad of plant biotechnology applications that rely on RNA delivery to intact cells.
Collapse
Affiliation(s)
- Gozde S. Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Natalie S. Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L. Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roger Chang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94702, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|