1
|
Hu L, Li X. Tailored Nucleation-Growth Strategy for Precise Self-Assembly of Block Copolymers. Chemistry 2025; 31:e202404266. [PMID: 39868967 DOI: 10.1002/chem.202404266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This concept mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties. We hope that the concept is more than a periodical summary of previous research work and can provide valuable inspiration for the research field.
Collapse
Affiliation(s)
- Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Chen S, Zhang C, Zhang X. Autodegradable Polymers: Complete Degradation without Any Trigger, Tunable Performance, and Biomedical Applications. J Am Chem Soc 2024; 146:34852-34860. [PMID: 39630650 DOI: 10.1021/jacs.4c14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Degradable polymers are an emerging research interest. The innovation of new degradable polymers for biomedical applications is challenging due to strict demands including nontoxicity of polymers and degraded products, complete degradation to avoid polymer residues in the body, and other suitable properties. Here, we demonstrate a series of degradable polymers for sustained-release drug applications synthesized by the alternating copolymerization of cyclic anhydrides and Schiff bases. In addition to common feedstocks, the copolymerization is versatile and catalyst-free, affording polymers incorporating cyclic topologies and in-chain ester and peptoid groups. Particularly, the polymers exhibit self- and autodegradation without any trigger, which is distinct from remaining degradation mechanisms. The degradation performance is widely regulated by the polymer structure and external temperature, resulting in complete degradation from a few hours to several months. Owing to their unique properties, the polymers are approved for biomedical applications, as revealed soundly through cell viability assay, in vitro and in vivo drug release.
Collapse
Affiliation(s)
- Shuohong Chen
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Prasannatha B, Ganivada MN, Nalla K, Kanade SR, Jana T. Hierarchical Structures of Amino Acid Derived Polyhydroxyurethanes: Promising Candidates as Drug Carriers and Cell Adhesive Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7719-7729. [PMID: 39495894 DOI: 10.1021/acsabm.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we examined the self-assembly of a series of biodegradable and biocompatible amino acid-based polyhydroxyurethanes (PHUs), investigating the structural influence of these polymers on their self-assembly and the resulting morphological features. The presence of hydrophilic and hydrophobic segments, along with carbonyl urethane, ester, and hydroxyl groups in the PHU backbone, facilitates intermolecular hydrogen bonding, enabling the formation of self-assemblies with hierarchical nanodimensional morphologies. We determined the critical aggregation concentration (CAC) and found that it largely depends on the PHU's structure. In-depth morphological studies demonstrated that the evolution of morphology proceeds in four steps: (1) the initial formation of micelles, which act as seeds at very low concentrations, (2) the elongation of these micelles into nanorod or nanopalette shapes below the CAC range, (3) the epitaxial growth of nanofibers at the CAC, and (4) the complete formation of fibrous mats above the CAC. Additionally, these hierarchical structures were utilized for the encapsulation and release of the drug doxorubicin (DOX). We observed that 75% of the encapsulated DOX was readily released in a mildly acidic environment, similar to the physiological conditions of cancer cells. Cellular uptake studies confirmed the effective uptake of the drug-loaded nanoassemblies into the cytoplasm of cells. Our studies also confirmed that these self-assembled structures can serve as effective cell adhesive scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Santosh Raja Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Alsawaf A, Lehnen AC, Dolynchuk O, Bapolisi AM, Beresowski C, Böker A, Bald I, Hartlieb M. Antibacterial Nanoplatelets via Crystallization-Driven Self-Assembly of Poly(l-lactide)-Based Block Copolymers. Biomacromolecules 2024; 25:6103-6114. [PMID: 39105693 PMCID: PMC11388454 DOI: 10.1021/acs.biomac.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Membrane-active antimicrobial materials are promising substances to fight antimicrobial resistance. Herein, crystallization-driven self-assembly (CDSA) is employed for the preparation of nanoparticles with different morphologies, and their bioactivity is explored. Block copolymers (BCPs) featuring a crystallizable and antimicrobial block were synthesized using a combination of ring-opening and photoiniferter RAFT polymerizations. Subsequently formed nanostructures formed by CDSA could not be deprotected without degradation of the structures. CDSA of deprotected BCPs yielded 2D diamond-shaped nanoplatelets in MeOH, while spherical nanostructures were observed for assembly in water. Platelets exhibited improved antibacterial capabilities against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) compared to their spherical counterparts. The absence of hemolytic activity leads to the excellent selectivity of platelets. A mechanism based on membrane permeabilization was confirmed via dye-leakage assays. This study emphasized the impact of the shape of nanostructures on their interaction with bacterial cells and how a controlled assembly can improve bioactivity.
Collapse
Affiliation(s)
- Ahmad Alsawaf
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Anne-Catherine Lehnen
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Oleksandr Dolynchuk
- Experimental
Polymer Physics, Martin Luther University
Halle-Wittenberg, Von-Danckelmann,
Platz 3, 06120 Halle, Germany
| | - Alain M. Bapolisi
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Christina Beresowski
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alexander Böker
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Matthias Hartlieb
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Fraunhofer
Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
6
|
Lin G, Tao J, Sun Y, Cui Y, Manners I, Qiu H. Breaking of Lateral Symmetry in Two-Dimensional Crystallization-Driven Self-Assembly on a Surface. J Am Chem Soc 2024; 146:14734-14744. [PMID: 38748980 DOI: 10.1021/jacs.4c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Symmetry breaking is prevalent in nature and provides distinctive access to hierarchical structures for artificial materials. However, it is rarely explored in two-dimensional (2D) entities, especially for lateral asymmetry. Herein, we describe a unique symmetry breaking process in surface-initiated 2D living crystallization-driven self-assembly. The 2D epitaxial growth occurs only at one lateral side of the immobilized cylindrical micelle seeds, accessing unilateral platelets with the yield increasing with the seed length, the growth temperature, and poly(2-vinylpyridine) corona length (maximum = 92%). Generally, the tilted immobilization of seeds blocks one lateral side and triggers the lateral symmetry breaking, where the intensity and spatial arrangement of seed-surface interactions dictate the regulation. Segmented unilateral platelets with segmented corona regions are further fabricated with the addition of different blended unimers. Remarkably, discrete slope-like and dense blade-like platelet arrays grow off the surface when seeds are compactly aligned either with spherical micelles or themselves. This strategy provides nanoscale insights into the symmetry breaking in long-range self-assembly and would be promising for the design of innovative colloids and smart surfaces.
Collapse
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiawei Tao
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
7
|
Sun Y, Liu Z, Zhang C, Zhang X. Sustainable Polymers with High Performance and Infinite Scalability. Angew Chem Int Ed Engl 2024; 63:e202400142. [PMID: 38421200 DOI: 10.1002/anie.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Our society has been pursuing high-performance biodegradable polymers made from facile methods and readily available monomers. Here, we demonstrate a library of enzyme-degradable polymers with desirable properties from the first reported step polyaddition of diamines, COS, and diacrylates. The polymers contain in-chain ester and thiourethane groups, which can serve as lipase-degradation and hydrogen-bonding physical crosslinking points, respectively, resulting in possible biodegradability as well as upgraded mechanical and thermal properties. Also, the properties of the polymers are scalable due to the versatile method and the wide variety of monomers. We obtain 46 polymers with tunable performance covering high-Tm crystalline plastics, thermoplastic elastomers, and amorphous plastics by regulating polymer structure. Additionally, the polymerization method is highly efficient, atom-economical, quantitatively yield, metal- and even catalyst-free. Overall, the polymers are promising green materials given their degradability, simple and modular synthesis, remarkable and tunable properties, and readily available monomers.
Collapse
Affiliation(s)
- Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
8
|
Gu P, Li H, Xiong B, Li J, Chen Z, Li W, Mao X, Wang H, Jin J, Xu J, Zhu J. Decoding the Pathway-Dependent Self-Assembly of Polymer-Grafted Nanoparticles by Ligand Crystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306671. [PMID: 37992245 DOI: 10.1002/smll.202306671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Functional metamaterials can be constructed by assembling nanoparticles (NPs) into well-ordered structures, which show fascinating properties at different length scales. Using polymer-grafted NPs (PGNPs) as a building block, flexible composite metamaterials can be obtained, of which the structure is significantly affected by the property of polymer ligands. Here, it is demonstrated that the crystallization of polymer ligands determines the assembly behavior of NPs and reveal a pathway-dependent self-assembly of PGNPs into different metastructures in solution. By changing the crystallization degree of polymer ligands, the arrangement structure of NPs can be tailored. When the polymer ligands highly crystallize, the PGNPs assemble into diamond-shaped platelets, in which the NPs arrange disorderedly. When the polymer ligands lowly crystallize, the PGNPs assemble into highly ordered 3D superlattices, in which the NPs pack into a body-centered-cubic structure. The structure transformation of PGNP assemblies can be achieved by thermal annealing to regulate the crystallization of polymer ligands. Interestingly, the diamond-shaped platelets remain "living" for seeded epitaxial growth of newly added crystalline species. This work demonstrates the effects of ligand crystallization on the crystallization of NP, providing new insights into the structure regulation of metamaterials.
Collapse
Affiliation(s)
- Pan Gu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Hao Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bijin Xiong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jinlan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhenxian Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Wang Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Huayang Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
9
|
Wang J, Hou L. Spatially Amplified and Rigid Junction in Diblock Copolymers: Reduced Microphase Separation Size via Interface Expansion. ACS Macro Lett 2024; 13:348-353. [PMID: 38447586 DOI: 10.1021/acsmacrolett.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We introduce an approach in diblock copolymer design, where modifying the junction point with rigid bulky monomer expands the cross-sectional area of the interface and leads to a decrease in the repeat period. Using living anionic polymerization, we synthesized a series of dialkynyl midfunctionalized poly(styrene-b-methyl methacrylate) (PSM-DA) and functionalized them using the thiol-alkyne click reaction with specifically selected rigid bulky monomers: PSS-(3-mercapto)propyl-heptaisobutyl substituted (PSS) and 1-adamantanethiol (ADA). This modification, though involving only a single monomer unit within the diblock copolymer structure, brought about a significant reduction in domain size, with PSS and ADA reducing it by 18% and 15%, respectively. The results indicate a method for reducing the domain sizes of block copolymers, which could lead to advancements in lithography and various nanotechnological applications.
Collapse
Affiliation(s)
- Jiaxian Wang
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
10
|
Wang M, Wang Y, Pang N, Wang M, He Y, Wang X, Guo J. Efficient Removal of Tetracyclines and Quinolones Enabled by Polyphenol-Mediated Supramolecular Coagulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320295 DOI: 10.1021/acs.langmuir.3c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Ubiquitous antibiotics threaten human health and ecosystem sustainability, and existing removal strategies, especially conventional multistep water treatments, are primarily limited by the antibiotic-specific removal capability. Here, we explore the natural biomass, plant polyphenols, in the capture of various antibiotics with a facile treatment─polyphenol-mediated antibiotic-independent supramolecular coagulation (PMAC). The PMAC shows a superior performance in removing five tetracyclines and quinolones (up to 98.54%), even under complex environmental parameters, including different pH, the presence of inorganic particles and ionic strength, and the presence of conventional colloid-associated contaminants. Our mechanistic studies suggested that PMAC is capable of exerting multiple molecular interactions with various antibiotics, and the coordination-driven self-assembly further destabilizes the phenolic-antibiotic nanocomplexes, enabling an antibiotic-independent coagulation. Collectively, the combination of efficient remediation with inexpensive biomass suggests a simple and scalable method for the sustainable removal of antibiotics. Our strategy shows great promise as a cost-effective, facile approach to eliminate antibiotics capable of being integrated into the currently existing water treatment systems.
Collapse
Affiliation(s)
- Mengyue Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Nanjiong Pang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingyao Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
11
|
Ghaderi S, Rashno M, Sarkaki A, Khoshnam SE. Sesamin mitigates lead-induced behavioral deficits in male rats: The role of oxidative stress. Brain Res Bull 2024; 206:110852. [PMID: 38141790 DOI: 10.1016/j.brainresbull.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Lu Y, Gao J, Ren Y, Ding Y, Jia L. Synergetic Self-Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304955. [PMID: 37649168 DOI: 10.1002/smll.202304955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.
Collapse
Affiliation(s)
- Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yi Ding
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
13
|
Teng F, Xiang B, Liu L, Varlas S, Tong Z. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2023; 145:28049-28060. [PMID: 38088129 DOI: 10.1021/jacs.3c09370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.
Collapse
Affiliation(s)
- Feiyang Teng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingbing Xiang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill S3 7HF, Sheffield, U.K
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Rajak A, Das A. Cascade Energy Transfer and White-Light Emission in Chirality-Controlled Crystallization-Driven Two-Dimensional Co-assemblies from Donor and Acceptor Dye-Conjugated Polylactides. Angew Chem Int Ed Engl 2023; 62:e202314290. [PMID: 37842911 DOI: 10.1002/anie.202314290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
15
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
16
|
Tong Z, Xie Y, Arno MC, Zhang Y, Manners I, O'Reilly RK, Dove AP. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat Chem 2023; 15:824-831. [PMID: 37081206 PMCID: PMC10239731 DOI: 10.1038/s41557-023-01177-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
The creation of nanoparticles with controlled and uniform dimensions and spatially defined functionality is a key challenge. The recently developed living crystallization-driven self-assembly (CDSA) method has emerged as a promising route to one-dimensional (1D) and 2D core-shell micellar assemblies by seeded growth of polymeric and molecular amphiphiles. However, the general limitation of the epitaxial growth process to a single core-forming chemistry is an important obstacle to the creation of complex nanoparticles with segmented cores of spatially varied composition that can be subsequently exploited in selective transformations or responses to external stimuli. Here we report the successful use of a seeded growth approach that operates for a variety of different crystallizable polylactone homopolymer/block copolymer blend combinations to access 2D platelet micelles with compositionally distinct segmented cores. To illustrate the utility of controlling internal core chemistry, we demonstrate spatially selective hydrolytic degradation of the 2D platelets-a result that may be of interest for the design of complex stimuli-responsive particles for programmed-release and cargo-delivery applications.
Collapse
Affiliation(s)
- Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
17
|
Scanga RA, Shahrokhinia A, Borges J, Sarault SH, Ross MB, Reuther JF. Asymmetric Polymerization-Induced Crystallization-Driven Self-Assembly of Helical, Rod-Coil Poly(aryl isocyanide) Block Copolymers. J Am Chem Soc 2023; 145:6319-6329. [PMID: 36913666 DOI: 10.1021/jacs.2c13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Polymerization-induced crystallization-driven self-assembly (PI-CDSA) is combined, for the first time, with helical, rod-coil block copolymer (BCP) self-assembly to enable scalable and controllable in situ synthesis of chiral nanostructures of variable shape, size, and dimensionality. Herein, we report newly developed asymmetric PI-CDSA (A-PI-CDSA) methodologies in the synthesis and in situ self-assembly of chiral, rod-coil BCPs composed of poly(aryl isocyanide) (PAIC) rigid-rod and poly(ethylene glycol) (PEG) random-coil components. Using PEG-based nickel(II) macroinitiators, the construction of PAIC-BCP nanostructures with variable chiral morphologies is accomplished at solids contents ranging 5.0-10 wt %. At low core-to-corona ratios for PAIC-BCPs, we demonstrate the scalable formation of chiral one-dimensional (1D) nanofibers via "living" A-PI-CDSA whose contour lengths can be tuned through alterations to unimer-to-1D seed particle ratio. At high core-to-corona ratios, A-PI-CDSA was implemented for the rapid fabrication of molecularly thin, uniform hexagonal nanosheets via spontaneous nucleation and growth aided by vortex agitation. Investigations into 2D seeded, living A-PI-CDSA revealed a brand-new paradigm in the context of CDSA where hierarchically chiral, M helical spirangle morphologies (i.e., hexagonal helicoids) are size-tuned in three dimensions (i.e., heights and areas) via alterations to unimer-to-seed ratio. These unique nanostructures are formed in situ at scalable solids contents up to 10 wt % via rapid crystallization about screw dislocation defect sites in an enantioselective fashion. The liquid crystalline nature of PAIC blocks dictates the hierarchical assembly of these BCPs, with chirality translated across length scales and in multiple dimensions affording large amplifications in chiroptical activity with g-factors reaching -0.030 for spirangle nanostructures.
Collapse
Affiliation(s)
- Randall A Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jake Borges
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sean H Sarault
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Michael B Ross
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
18
|
Chemical shield effect of metal complexation on seeded growth of poly(ε-caprolactone) core-forming blends. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Huo H, Zou J, Yang SG, Zhang J, Liu J, Liu Y, Hao Y, Chen H, Li H, Huang C, Ungar G, Liu F, Zhang Z, Zhang Q. Multicompartment Nanoparticles by Crystallization-Driven Self-Assembly of Star Polymers: Combining High Stability and Loading Capacity. Macromol Rapid Commun 2023; 44:e2200706. [PMID: 36353903 DOI: 10.1002/marc.202200706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Indexed: 11/11/2022]
Abstract
Herein novel multicompartment nanoparticles (MCNs) that combine high stability and cargo loading capacity are developed. The MCNs are fabricated by crystallization-driven self-assembly (CDSA) of a tailor-made 21 arm star polymer, poly(L-lactide)[poly(tert-butyl acrylate)-block-poly(ethylene glycol)]20 [PLLA(PtBA-b-PEG)20 ]. Platelet-like or spherical MCNs containing a crystalline PLLA core and hydrophobic PtBA subdomains are formed and stabilized by PEG. Hydrophobic cargos, such as Nile Red and chemotherapeutic drug doxorubicin, can be successfully encapsulated into the collapsed PtBA subdomains with loading capacity two orders of magnitude higher than traditional CDSA nanoparticles. Depolarized fluorescence measurements of the Nile Red loaded MCNs suggest that the free volume of the hydrophobic chains in the nanoparticles may be the key for regulating their drug loading capacity. In vitro study of the MCNs suggests excellent cytocompatibility of the blank nanoparticles as well as a dose-dependent cellular uptake and cytotoxicity of the drug-loaded MCNs.
Collapse
Affiliation(s)
- Haohui Huo
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Shu-Gui Yang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiaqi Zhang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yutong Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Yanyun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Goran Ungar
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Qilu Zhang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Shi Q, Yin H, Song R, Xu J, Tan J, Zhou X, Cen J, Deng Z, Tong H, Cui C, Zhang Y, Li X, Zhang Z, Liu S. Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nat Chem 2023; 15:257-270. [PMID: 36329179 DOI: 10.1038/s41557-022-01076-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Identification and quantification of synthetic polymers in complex biological milieu are crucial for delivery, sensing and scaffolding functions, but conventional techniques based on imaging probe labellings only afford qualitative results. Here we report modular construction of precise sequence-defined amphiphilic polymers that self-assemble into digital micelles with contour lengths strictly regulated by oligourethane sequences. Direct sequence reading is accomplished with matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry, facilitated by high-affinity binding of alkali metal ions with poly(ethylene glycol) dendrons and selective cleavage of benzyl-carbamate linkages. A mixture of four types of digital micelles could be identified, sequence-decoded and quantified by MALDI and MALDI imaging at cellular, organ and tissue slice levels upon in vivo administration, enabling direct comparison of biological properties for each type of digital micelle in the same animal. The concept of digital micelles and encoded amphiphiles capable of direct sequencing and high-throughput label-free quantification could be exploited for next-generation precision nanomedicine designs (such as digital lipids) and protein corona studies.
Collapse
Affiliation(s)
- Qiangqiang Shi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Hao Yin
- Mass Spectrometry Lab, Instruments Center for Physical Science, University of Science and Technology of China, Hefei, China
| | - Rundi Song
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Jie Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Jiajia Tan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Xin Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China
| | - Huimin Tong
- Center for Instrumental Analysis, Xi'an Jiaotong University, Xi'an, China
| | - Chenhui Cui
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, China
| | - Yanfeng Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
21
|
Lin D, Li Y, Zhang L, Chen Y, Tan J. Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanling Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Ghaderi S, Komaki A, Salehi I, Basir Z, Rashno M. Possible mechanisms involved in the protective effects of chrysin against lead-induced cognitive decline: An in vivo study in a rat model. Biomed Pharmacother 2023; 157:114010. [PMID: 36402029 DOI: 10.1016/j.biopha.2022.114010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) is a highly poisonous environmental pollutant that can induce cognitive decline. Chrysin, a natural flavonoid compound, has anti-oxidative, anti-inflammatory, and neuroprotective properties in different neurodegenerative disorders. The present study was designed to examine the putative effects of chrysin against Pb-induced cognitive impairment and the possible involved mechanisms. Adult male Wistar rats were exposed to Pb acetate (500 ppm in standard drinking water) either alone or in combination with daily oral administration of chrysin (30 mg/kg) for eight consecutive weeks. During the eight-week period of the study, the cognitive capacity of the rats was evaluated by employing both novel object recognition and passive avoidance tests. On day 56, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, pro- and anti-inflammatory cytokines and histological changes were evaluated in the cerebral cortex and hippocampus of the rats. Moreover, Pb levels in blood and brain tissues were assessed. The results showed that Pb exposure causes cognitive decline, inhibition of hippocampal LTP induction, imbalance of pro- and anti-inflammatory cytokines, enhancement of Pb levels in blood and brain tissues, and neuronal loss. However, chrysin treatment improved cognitive dysfunction, ameliorated hippocampal LTP impairment, modulated inflammatory status, reduced Pb concentration, and prevented neuronal loss in the Pb-exposed rats. The results suggest that chrysin alleviates Pb-induced cognitive deficit, possibly through mitigation of hippocampal synaptic dysfunction, modulation of inflammatory status, reduction of Pb concentration, and prevention of neuronal loss.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Asadabad School of Medical Sciences, Asadabad, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran.
| |
Collapse
|
23
|
Wong AR, Barrera M, Pal A, Lamb JR. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Allison R. Wong
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Melissa Barrera
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Arpan Pal
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| | - Jessica R. Lamb
- Department of Chemistry, University of Minnesota─Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
24
|
Ellis CE, Garcia-Hernandez JD, Manners I. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly. J Am Chem Soc 2022; 144:20525-20538. [DOI: 10.1021/jacs.2c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
25
|
Street STG, Chrenek J, Harniman RL, Letwin K, Mantell JM, Borucu U, Willerth SM, Manners I. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. J Am Chem Soc 2022; 144:19799-19812. [PMID: 36260789 DOI: 10.1021/jacs.2c06695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Josie Chrenek
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Keiran Letwin
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Judith M Mantell
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, U.K
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.,GW4 Facility for High-Resolution Electron Cryo-Microscopy, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| | - Stephanie M Willerth
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.,Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
26
|
Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers (Basel) 2022; 14:polym14194125. [PMID: 36236073 PMCID: PMC9571386 DOI: 10.3390/polym14194125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fabricating hierarchical nanomaterials by self-assembly of rod-coil block copolymers attracts great interest. However, the key factors that affect the formation of the hierarchical nanomaterials have not been thoroughly researched. Herein, we have synthesized two diblock copolymers composed of poly(3-hexylthiophene) (P3HT) and polyethylene glycol (PEG). Through a heating, cooling, and aging process, a series of multilayered hierarchical micelles and fibers were prepared in alcoholic solutions. The transition from fibers to hierarchical micelles are strictly influenced by the strength of the π-π stacking interaction, the PEG chain length, and solvent. In isopropanol, the P3HT22-b-PEG43 could self-assemble into hierarchical micelles composed of several two-dimensional (2D) laminar layers, driven by the π-π stacking interaction and van der Waals force. The P3HT22-b-PEG43 could not self-assemble into well-defined nanostructures in methanol and ethanol, but could self-assemble into fibers in isobutanol. However, the P3HT22-b-PEG113 with a longer corona block only self-assembled into fibers in four alcoholic solutions, due to the increase in dissolving capacity and steric hindrance. The sizes and the size distributions of the nanostructures both increased with the increase in polymer concentration and the decrease in solvent polarity. This study shows a method to fabricate the hierarchical micelles.
Collapse
|
27
|
Liu Z, Shi X, Shu W, Qi S, He X, Wang X, He X. Effect of Hydrophobic Hydration on the Self-Assembling Behavior of Poly ( l-Lactide) Homopolymers with an Ionic End Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
28
|
Wang C, Xu L, Zhou L, Liu N, Wu Z. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐Handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022; 61:e202207028. [DOI: 10.1002/anie.202207028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
29
|
Ellis CE, Hils C, Oliver AM, Greiner A, Schmalz H, Manners I. Electrospinning of 1D Fiber‐Like Block Copolymer Micelles with a Crystalline Core. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
| | - Christian Hils
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
| | - Alex M. Oliver
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Andreas Greiner
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Holger Schmalz
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
| |
Collapse
|
30
|
Ganda S, Wong CK, Biazik J, Raveendran R, Zhang L, Chen F, Ariotti N, Stenzel MH. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35333-35343. [PMID: 35895018 DOI: 10.1021/acsami.2c06555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding cellular uptake and particle trafficking within the cells is essential for targeted drug delivery applications. Existing studies reveal that the geometrical aspects of nanocarriers, for example, shape and size, determine their cell uptake and sub-cellular transport pathways. However, considerable efforts have been directed toward understanding the cell uptake mechanism and trafficking of spherical particles. Detailed analysis on the uptake mechanism and downstream intracellular processing of non-spherical particles remains elusive. Here, we used polymeric two-dimensional platelets based on poly(ε-caprolactone) (PCL) prepared by living crystallization-driven self-assembly as a platform to investigate the cell uptake and intracellular transport of non-spherical particles in vitro. PCL is known to degrade only slowly, and these platelets were still stable after 2 days of incubation in artificial lysosomal media. Upon cell uptake, the platelets were transported through an endo/lysosomal pathway and were found to degrade completely in the lysosome at the end of the cell uptake cycle. We observed a morphological transformation of the lysosomes, which correlates with the stages of platelet degradation in the lysosome. Overall, we found an accelerated degradation of PCL, which was likely caused by mechanical forces inside the highly stretched endosomes.
Collapse
Affiliation(s)
- Sylvia Ganda
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lin Zhang
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Wang C, Xu L, Zhou L, Liu N, Wu ZQ. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Lei Xu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Li Zhou
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Na Liu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Zong-Quan Wu
- Jilin University Polymer Chemistry and Physis Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|
32
|
Sun H, Chen S, Li X, Leng Y, Zhou X, Du J. Lateral growth of cylinders. Nat Commun 2022; 13:2170. [PMID: 35449206 PMCID: PMC9023456 DOI: 10.1038/s41467-022-29863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China.
| | - Shuai Chen
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China. .,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China.
| |
Collapse
|
33
|
Akar I, Foster JC, Leng X, Pearce AK, Mathers RT, O’Reilly RK. Log Poct/SA Predicts the Thermoresponsive Behavior of P(DMA- co-RA) Statistical Copolymers. ACS Macro Lett 2022; 11:498-503. [PMID: 35575334 PMCID: PMC9022432 DOI: 10.1021/acsmacrolett.1c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Polymers that exhibit
a lower critical solution temperature (LCST)
have been of great interest for various biological applications such
as drug or gene delivery, controlled release systems, and biosensing.
Tuning the LCST behavior through control over polymer composition
(e.g., upon copolymerization of monomers with different hydrophobicity)
is a widely used method, as the phase transition is greatly affected
by the hydrophilic/hydrophobic balance of the copolymers. However,
the lack of a general method that relates copolymer hydrophobicity
to their temperature response leads to exhaustive experiments when
seeking to obtain polymers with desired properties. This is particularly
challenging when the target copolymers are comprised of monomers that
individually form nonresponsive homopolymers, that is, only when copolymerized
do they display thermoresponsive behavior. In this study, we sought
to develop a predictive relationship between polymer hydrophobicity
and cloud point temperature (TCP). A series
of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic
alkyl acrylate monomers, and their hydrophobicity was compared using
surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between
the Log Poct/SA of the copolymers and
their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational
tool to improve the rational design of copolymers with desired temperature
responses prior to synthesis.
Collapse
Affiliation(s)
- Irem Akar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiyue Leng
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
34
|
Finnegan JR, Davis TP, Kempe K. Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- John R. Finnegan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
36
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
37
|
Kwon Y, Ma H, Kim KT. Self-Assembly of Stereoblock Copolymers Driven by the Chain Folding of Discrete Poly( d-lactic acid- b- l-lactic acid) via Intramolecular Stereocomplexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongbeom Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyunji Ma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
Hwang SH, Kang SY, Yang S, Lee J, Choi TL. Synchronous Preparation of Length-Controllable 1D Nanoparticles via Crystallization-Driven In Situ Nanoparticlization of Conjugated Polymers. J Am Chem Soc 2022; 144:5921-5929. [PMID: 35271264 DOI: 10.1021/jacs.1c13385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precise size control of semiconducting nanomaterials from polymers is crucial for optoelectronic applications, but the low solubility of conjugated polymers makes this challenging. Herein, we prepared length-controlled semiconducting one-dimensional (1D) nanoparticles by synchronous self-assembly during polymerization. First, we succeeded in unprecedented living polymerization of highly soluble conjugated poly(3,4-dihexylthiophene). Then, block copolymerization of poly(3,4-dihexylthiophene)-block-polythiophene spontaneously produced narrow-dispersed 1D nanoparticles with lengths from 15 to 282 nm according to the size of a crystalline polythiophene core. The key factors for high efficiency and length control are a highly solubilizing shell and slow polymerization of the core, thereby favoring nucleation elongation over isodesmic growth. Combining kinetics and high-resolution imaging analyses, we propose a unique mechanism called crystallization-driven in situ nanoparticlization of conjugated polymers (CD-INCP) where spontaneous nucleation creates seeds, followed by seeded growth in units of micelles. Also, we achieved "living" CD-INCP through a chain-extension experiment. We further simplified CD-INCP by adding both monomers together in one-shot copolymerization but still producing length-controlled nanoparticles.
Collapse
Affiliation(s)
- Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
40
|
Li Z, Pearce AK, Du J, Dove AP, O'Reilly RK. Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zehua Li
- Department of Chemistry University of Warwick Coventry UK
- School of Chemistry University of Birmingham Birmingham UK
- Department of Polymeric Materials, School of Materials Science and Engineering Tongji University Shanghai China
| | | | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering Tongji University Shanghai China
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham UK
| | | |
Collapse
|
41
|
Su Y, Jiang Y, Liu L, Xie Y, Chen S, Wang Y, O’Reilly RK, Tong Z. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yawei Su
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yikun Jiang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Shichang Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongjun Wang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
42
|
Harniman RL, Pearce S, Manners I. Exploring the "Living" Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by In Situ Solution-Phase Atomic Force Microscopy. J Am Chem Soc 2022; 144:951-962. [PMID: 34985896 DOI: 10.1021/jacs.1c11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Living crystallization-driven self-assembly of polymeric and molecular amphiphiles is of growing interest as a seeded growth route to uniform 1D, 2D, and more complex micellar nanoparticles with controlled dimensions and a range of potential applications. Although most studies have been performed using colloidally stable seeds in bulk solution, growth of block copolymer (BCP) nanofibers from seeds confined to a surface is attracting increased attention. Herein, we have used atomic force microscopy (AFM) to undertake detailed studies of the growth of BCP nanofibers from immobilized seeds located on a Si surface. Through initial ex situ AFM studies and in situ AFM video analysis in solution, we determined that growth occurred in four stages, whereby an initial surface-bound growth regime transitions to surface-limited growth. As the nanofiber length increases, surface influence is diminished as the newly grown micelle segment is no longer bound to the Si substrate. Finally, a surface-independent regime occurs where nanofiber growth continues into bulk solution. In addition to the anticipated nanofiber elongation, our studies revealed occasional examples of AFM tip-induced core fragmentation. In these cases, the termini of the newly formed fragments were also active to further growth. Furthermore, unidirectional growth was detected in cases where the seed was oriented at a significant angle with respect to the surface, thereby restricting unimer access to one terminus.
Collapse
Affiliation(s)
- Robert L Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Bristol Centre for Functional Nanomaterials, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
43
|
Garcia-Hernandez JD, Parkin H, Ren Y, Zhang Y, Manners I. Hydrophobic Cargo Loading at the Core-Corona Interface of Uniform, Length-Tunable Aqueous Diblock Copolymer Nanofibers with a Crystalline Polycarbonate Core. Polym Chem 2022. [DOI: 10.1039/d2py00395c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1D core-shell nanoparticles are considered to be among the most promising for biomedical applications such as drug delivery. The versatile living crystallization-driven self-assembly (CDSA) seeded growth method allows access to...
Collapse
|
44
|
MacFarlane LR, Li X, Faul CFJ, Manners I. Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liam R. MacFarlane
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Xiaoyu Li
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victorias, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
45
|
Lei S, Tian J, Fukui T, Winnik MA, Manners I. Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
46
|
Fukushima K, Matsuzaki K, Oji M, Higuchi Y, Watanabe G, Suzuki Y, Kikuchi M, Fujimura N, Shimokawa N, Ito H, Kato T, Kawaguchi S, Tanaka M. Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kodai Matsuzaki
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masashi Oji
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Moriya Kikuchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Nozomi Fujimura
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Naofumi Shimokawa
- School of Materials and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seigou Kawaguchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
47
|
Asano S, Choi J, Tran TH, Chanthaset N, Ajiro H. The influence of chain‐end functionalization and stereocomplexation on the degradation stability under alkaline condition. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shin Asano
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Jaeyeong Choi
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Thi Hang Tran
- Faculty of Chemical Technology Viet Tri University of Industry, Ministry of Industry and Trade Lam Thao Phu Tho Vietnam
| | - Nalinthip Chanthaset
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Ikoma Nara Japan
- Data Science Center Nara Institute of Science and Technology Ikoma Nara Japan
| |
Collapse
|
48
|
Janoszka N, Azhdari S, Hils C, Coban D, Schmalz H, Gröschel AH. Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene- block-Polybutadiene- block-Poly( L-lactide) Triblock Terpolymers. Polymers (Basel) 2021; 13:polym13244358. [PMID: 34960909 PMCID: PMC8706259 DOI: 10.3390/polym13244358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The confinement assembly of block copolymers shows great potential regarding the formation of functional microparticles with compartmentalized structure. Although a large variety of block chemistries have already been used, less is known about microdomain degradation, which could lead to mesoporous microparticles with particularly complex morphologies for ABC triblock terpolymers. Here, we report on the formation of triblock terpolymer-based, multicompartment microparticles (MMs) and the selective degradation of domains into mesoporous microparticles. A series of polystyrene-block-polybutadiene-block-poly(L-lactide) (PS-b-PB-b-PLLA, SBL) triblock terpolymers was synthesized by a combination of anionic vinyl and ring-opening polymerization, which were transformed into microparticles through evaporation-induced confinement assembly. Despite different block compositions and the presence of a crystallizable PLLA block, we mainly identified hexagonally packed cylinders with a PLLA core and PB shell embedded in a PS matrix. Emulsions were prepared with Shirasu Porous Glass (SPG) membranes leading to a narrow size distribution of the microparticles and control of the average particle diameter, d ≈ 0.4 µm–1.8 µm. The core–shell cylinders lie parallel to the surface for particle diameters d < 0.5 µm and progressively more perpendicular for larger particles d > 0.8 µm as verified with scanning and transmission electron microscopy and particle cross-sections. Finally, the selective degradation of the PLLA cylinders under basic conditions resulted in mesoporous microparticles with a pronounced surface roughness.
Collapse
Affiliation(s)
- Nicole Janoszka
- Physical Chemistry, Center for Soft Nanoscience (SoN) and Center for Nanotechnology (CeNTech), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany; (N.J.); (S.A.); (D.C.)
| | - Suna Azhdari
- Physical Chemistry, Center for Soft Nanoscience (SoN) and Center for Nanotechnology (CeNTech), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany; (N.J.); (S.A.); (D.C.)
| | - Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Deniz Coban
- Physical Chemistry, Center for Soft Nanoscience (SoN) and Center for Nanotechnology (CeNTech), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany; (N.J.); (S.A.); (D.C.)
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Correspondence: (H.S.); (A.H.G.)
| | - André H. Gröschel
- Physical Chemistry, Center for Soft Nanoscience (SoN) and Center for Nanotechnology (CeNTech), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany; (N.J.); (S.A.); (D.C.)
- Correspondence: (H.S.); (A.H.G.)
| |
Collapse
|
49
|
Xu W, Zheng Y, Pan P. Crystallization‐driven self‐assembly of semicrystalline block copolymers and end‐functionalized polymers: A minireview. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| |
Collapse
|
50
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|