1
|
Arini GS, Borelli TC, Ferreira EG, de Felício R, Rezende-Teixeira P, Pedrino M, Rabiço F, de Siqueira GMV, Mencucini LG, Tsuji H, Neves Andrade LS, Garrido LM, Padilla G, Gil-de-la-Fuente A, Wang M, Lopes NP, Barbosa Trivella DB, Costa-Lotufo LV, Guazzaroni ME, Roberto da Silva R. A multi-omics reciprocal analysis for characterization of bacterial metabolism. Front Mol Biosci 2025; 12:1515276. [PMID: 40182618 PMCID: PMC11965639 DOI: 10.3389/fmolb.2025.1515276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Exploiting microbial natural products is a key pursuit of the bioactive compound discovery field. Recent advances in modern analytical techniques have increased the volume of microbial genomes and their encoded biosynthetic products measured by mass spectrometry-based metabolomics. However, connecting multi-omics data to uncover metabolic processes of interest is still challenging. This results in a large portion of genes and metabolites remaining unannotated. Further exacerbating the annotation challenge, databases and tools for annotation and omics integration are scattered, requiring complex computations to annotate and integrate omics datasets. Methods Here we performed a two-way integrative analysis combining genomics and metabolomics data to describe a new approach to characterize the marine bacterial isolate BRA006 and to explore its biosynthetic gene cluster (BGC) content as well as the bioactive compounds detected by metabolomics. Results and Discussion We described BRA006 genomic content and structure by comparing Illumina and Oxford Nanopore MinION sequencing approaches. Digital DNA:DNA hybridization (dDDH) taxonomically assigned BRA006 as a potential new species of the Micromonospora genus. Starting from LC-ESI(+)-HRMS/MS data, and mapping the annotated enzymes and metabolites belonging to the same pathways, our integrative analysis allowed us to correlate the compound Brevianamide F to a new BGC, previously assigned to other function.
Collapse
Affiliation(s)
- Gabriel Santos Arini
- Computational Chemical Biology Laboratory, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tiago Cabral Borelli
- Computational Chemical Biology Laboratory, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elthon Góis Ferreira
- Marine Pharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Paula Rezende-Teixeira
- Marine Pharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Pedrino
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
- MetaGenLab Laboratory, Department of Biology, FFCLRP, University of São Paulo of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Franciene Rabiço
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
- MetaGenLab Laboratory, Department of Biology, FFCLRP, University of São Paulo of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Marcelino Viana de Siqueira
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
- MetaGenLab Laboratory, Department of Biology, FFCLRP, University of São Paulo of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiz Gabriel Mencucini
- Computational Chemical Biology Laboratory, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Henrique Tsuji
- Computational Chemical Biology Laboratory, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucas Sousa Neves Andrade
- Laboratory of Bioproducts, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Maza Garrido
- Laboratory of Bioproducts, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel Padilla
- Laboratory of Bioproducts, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, United States
| | - Norberto Peporine Lopes
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Letícia Veras Costa-Lotufo
- Marine Pharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - María-Eugenia Guazzaroni
- MetaGenLab Laboratory, Department of Biology, FFCLRP, University of São Paulo of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Roberto da Silva
- Computational Chemical Biology Laboratory, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- NPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Cellular and Molecular Biology Program, Department of Cellular and Molecular Biology of Ribeirão Preto, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Lindahl SE, Metzger EM, Chen CH, Pink M, Zaleski JM. Pronounced electronic modulation of geometrically-regulated metalloenediyne cyclization. Chem Sci 2024; 16:255-279. [PMID: 39605870 PMCID: PMC11591729 DOI: 10.1039/d4sc05396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Using a diverse array of thermally robust phosphine enediyne ligands (dxpeb, X = Ph, Ph-pOCH3, Ph-pCF3, Ph-m 2CH3, Ph-m 2CF3, iPr, Cy, and t Bu) a novel suite of cisplatin-like Pt(ii) metalloenediynes (3, Pt(dxpeb)Cl2) has been synthesized and represents unique electronic perturbations on thermal Bergman cyclization kinetics. Complexes 3e (Ph-m 2CF3) and 3f (iPr) are the first of this structure type to be crystallographically characterized with inter alkyne termini distances (3e: 3.13 Å; 3f: 3.10 Å) at the lower end of the widely accepted critical distance range within which enediynes should demonstrate spontaneous ambient temperature cyclization. Despite different electronic profiles, these metalloenediynes adopt a rigid, uniform structure suggesting complexes of the form Pt(dxpeb)Cl2 have orthogonalized geometric and electronic contributions to thermal Bergman cyclization. Kinetic activation parameters determined using 31P NMR spectroscopy highlight the dramatic reactivity and thermal tunability of these complexes. At room temperature, the half-life (t 1/2) of cyclization spans a range of ∼35 hours and for the aryl phosphine derivatives, cycloaromatization rates are 10-30 times faster for complexes with electron donating substituents (3b: Ph-pOCH3; 3d: Ph-m 2CH3) compared to those with electron withdrawing substituents (3c: Ph-pCF3; 3e: Ph-m 2CF3). Computational interrogation of the aryl phosphine metalloenediynes 3a-3e reveals that the origin of this precise electronic control derives from electronic withdrawing group-mediated alkyne carbon polarization that amplifies coulombic repulsion increasing the cyclization barrier height. Additionally, mixing between the in-plane π-orbitals and the phosphine aryl ring system is pronounced for complexes with electron donating substituents which stabilizes the developing C-C bond and lowers the activation barrier. This π-orbital mixing is negligible however, for complexes with electron withdrawing substituents due to an energetic mismatch of the orbital systems. Overall, this work demonstrates that for geometrically rigid frameworks, even remote enediyne functionalization can have pronounced effects on activation barrier.
Collapse
Affiliation(s)
- Sarah E Lindahl
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| | - Erin M Metzger
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| | - Chun-Hsing Chen
- Molecular Structure Center, Indiana University Bloomington IN 47405 USA
| | - Maren Pink
- Molecular Structure Center, Indiana University Bloomington IN 47405 USA
| | - Jeffrey M Zaleski
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| |
Collapse
|
3
|
Prasongpholchai P, Tucker S, Burgess C, Jenkins R, Wilkening I, Corre C, Song L, Tosin M. Extended polyene formation by a cryptic iterative polyketide synthase from Rhodococcus. Chem Commun (Camb) 2024; 60:14085-14088. [PMID: 39526441 PMCID: PMC11563203 DOI: 10.1039/d4cc04963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Many reactive intermediates leading to high value molecules are biosynthesised by multifunctional enzymes in Actinobacteria. Herein we report the workings of a cryptic iterative polyketide synthase (iPKS) from the marine microorganism Rhodococcus erythropolis PR4. The iPKS generates extended polyenes up to C22 nonaenes, preluding novel chemistry and biology.
Collapse
Affiliation(s)
| | - Sam Tucker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Charles Burgess
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Robert Jenkins
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Christophe Corre
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
Ma GL, Liu WQ, Huang H, Yan XF, Shen W, Visitsatthawong S, Prakinee K, Tran H, Fan X, Gao YG, Chaiyen P, Li J, Liang ZX. An Enzymatic Oxidation Cascade Converts δ-Thiolactone Anthracene to Anthraquinone in the Biosynthesis of Anthraquinone-Fused Enediynes. JACS AU 2024; 4:2925-2935. [PMID: 39211597 PMCID: PMC11350584 DOI: 10.1021/jacsau.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O2), with the sulfur atom eliminated as H2S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Wan-Qiu Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Huawei Huang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xin-Fu Yan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Wei Shen
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Surawit Visitsatthawong
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Hoa Tran
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xiaohui Fan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yong-Gui Gao
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Pimchai Chaiyen
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Jian Li
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Zhao-Xun Liang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| |
Collapse
|
5
|
Han EJ, Seyedsayamdost MR. Genome mining for new enediyne antibiotics. Curr Opin Chem Biol 2024; 81:102481. [PMID: 38917732 PMCID: PMC11323183 DOI: 10.1016/j.cbpa.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Mori T, Teramoto T, Kakuta Y. Crystal structure of activating sulfotransferase SgdX2 involved in biosynthesis of secondary metabolite sungeidine. Biochem Biophys Res Commun 2024; 711:149891. [PMID: 38621346 DOI: 10.1016/j.bbrc.2024.149891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Microorganisms synthesize a plethora of complex secondary metabolites, many of which are beneficial to human health, such as anticancer agents and antibiotics. Among these, the Sungeidines are a distinct class of secondary metabolites known for their bulky and intricate structures. They are produced by a specific biosynthetic gene cluster within the genome of the soil-dwelling actinomycete Micromonospora sp. MD118. A notable enzyme in the Sungeidine biosynthetic pathway is the activating sulfotransferase SgdX2. In this pathway, SgdX2 mediates a key sulfation step, after which the product undergoes spontaneous dehydration to yield a Sungeidine compound. To delineate the structural basis for SgdX2's substrate recognition and catalytic action, we have determined the crystal structure of SgdX2 in complex with its sulfate donor product, 3'-phosphoadenosine 5'-phosphate (PAP), at a resolution of 1.6 Å. Although SgdX2 presents a compact overall structure, its core elements are conserved among other activating sulfotransferases. Our structural analysis reveals a unique substrate-binding pocket that accommodates bulky, complex substrates, suggesting a specialized adaptation for Sungeidine synthesis. Moreover, we have constructed a substrate docking model that provides insights into the molecular interactions between SgdX2 and Sungeidine F, enhancing our understanding of the enzyme's specificity and catalytic mechanism. The model supports a general acid-base catalysis mechanism, akin to other sulfotransferases, and underscores the minor role of disordered regions in substrate recognition. This integrative study of crystallography and computational modeling advances our knowledge of microbial secondary metabolite biosynthesis and may facilitate the development of novel biotechnological applications.
Collapse
Affiliation(s)
- Takahiro Mori
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takamasa Teramoto
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshimitsu Kakuta
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Wu Z, Wang W, Li J, Ma C, Chen L, Che Q, Zhang G, Zhu T, Li D. Evolution-Based Discovery of Polyketide Acylated Valine from a Cytochalasin-Like Gene Cluster in Simplicillium lamelliciola HDN13430. JOURNAL OF NATURAL PRODUCTS 2024; 87:1222-1229. [PMID: 38447096 DOI: 10.1021/acs.jnatprod.3c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,β-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.
Collapse
Affiliation(s)
- Zuodong Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Jilong Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Liangzhen Chen
- Qingdao Vland Biotech Group Co., Ltd. Qingdao, Shandong 266102, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
8
|
Gui C, Kalkreuter E, Liu YC, Li G, Steele AD, Yang D, Chang C, Shen B. Cofactorless oxygenases guide anthraquinone-fused enediyne biosynthesis. Nat Chem Biol 2024; 20:243-250. [PMID: 37945897 PMCID: PMC11623921 DOI: 10.1038/s41589-023-01476-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/β-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yu-Chen Liu
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Gengnan Li
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
9
|
Liao Y, Wang XJ, Ma GL, Candra H, Qiu En SL, Khandelwal S, Liang ZX. Biosynthesis of Octacosamicin A: Uncommon Starter/extender Units and Product Releasing via Intermolecular Amidation. Chembiochem 2024; 25:e202300590. [PMID: 37908177 DOI: 10.1002/cbic.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
Collapse
Affiliation(s)
- Yanghui Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Xue-Jiao Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Guang-Lei Ma
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Sean Lee Qiu En
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| |
Collapse
|
10
|
Han EJ, Lee SR, Townsend CA, Seyedsayamdost MR. Targeted Discovery of Cryptic Enediyne Natural Products via FRET-Coupled High-Throughput Elicitor Screening. ACS Chem Biol 2023; 18:1854-1862. [PMID: 37463302 PMCID: PMC11062413 DOI: 10.1021/acschembio.3c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Enediyne antibiotics are a striking family of DNA-cleaving natural products with high degrees of cytotoxicity and structural complexity. Microbial genome sequences, which have recently accumulated, point to an untapped trove of "cryptic" enediynes. Most of the cognate biosynthetic gene clusters (BGCs) are sparingly expressed under standard growth conditions, making it difficult to characterize their products. Herein, we report a fluorescence-based DNA cleavage assay coupled with high-throughput elicitor screening for the rapid, targeted discovery of cryptic enediyne metabolites. We applied the approach to Streptomyces clavuligerus, which harbors two such BGCs with unknown products, identified steroids as effective elicitors, and characterized 10 cryptic enediyne-derived natural products, termed clavulynes A-J with unusual carbonate and terminal olefin functionalities, with one of these congeners matching the recently reported jejucarboside. Our results contribute to the growing repertoire of enediynes and provide a blueprint for identifying additional ones in the future.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Pal P, Wessely SML, Townsend CA. Normal and Aberrant Methyltransferase Activities Give Insights into the Final Steps of Dynemicin A Biosynthesis. J Am Chem Soc 2023; 145:12935-12947. [PMID: 37276497 PMCID: PMC10985829 DOI: 10.1021/jacs.3c04393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The naturally occurring enediynes are notable for their complex structures, potent DNA cleaving ability, and emerging usefulness in cancer chemotherapy. They can be classified into three distinct structural families, but all are thought to originate from a common linear C15-heptaene. Dynemicin A (DYN) is the paradigm member of anthraquinone-fused enediynes, one of the three main classes and exceptional among them for derivation of both its enediyne and anthraquinone portions from this same early biosynthetic building block. Evidence is growing about how two structurally dissimilar, but biosynthetically related, intermediates combine in two heterodimerization reactions to create a nitrogen-containing C30-coupled product. We report here deletions of two genes that encode biosynthetic proteins that are annotated as S-adenosylmethionine (SAM)-dependent methyltransferases. While one, DynO6, is indeed the required O-methyltransferase implicated long ago in the first studies of DYN biosynthesis, the other, DynA5, functions in an unanticipated manner in the post-heterodimerization events that complete the biosynthesis of DYN. Despite its removal from the genome of Micromonospora chersina, the ΔdynA5 strain retains the ability to synthesize DYN, albeit in reduced titers, accompanied by two unusual co-metabolites. We link the appearance of these unexpected structures to a substantial and contradictory body of other recent experimental data to advance a biogenetic rationale for the downstream steps that lead to the final formation of DYN. A sequence of product-forming transformations that is in line with new and existing experimental results is proposed and supported by a model reaction that also encompasses the formation of the crucial epoxide essential for the activation of DYN for DNA cleavage.
Collapse
Affiliation(s)
- Paramita Pal
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Serena M L Wessely
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Pal P, Alley JR, Townsend CA. Examining Heterodimerization by Aryl C-N Coupling in Dynemicin Biosynthesis. ACS Chem Biol 2023; 18:304-314. [PMID: 36696117 DOI: 10.1021/acschembio.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distinct among the enediyne antitumor antibiotics, the dynemicin subgroup is comprised of two discrete halves, an enediyne and an anthraquinone, but each is ultimately derived from the same linear β-hydroxyhexaene precursor. The linkage of these two halves by an aryl C-N bond is examined here using a variety of experimental approaches. We demonstrate that this heterodimerization is specific for anthracenyl iodide as the corresponding bromo- and amino-substituted anthracenes do not support dynemicin biosynthesis. Furthermore, biochemical experiments and chemical model reactions support an SRN1 mechanism for the aryl C-N coupling in which electron transfer occurs to the iodoanthracene, followed by loss of an anthracenyl iodide and partition of the resulting aryl radical between C-N coupling and reduction by hydrogen abstraction. An enzyme pull-down experiment aiming to capture the protein(s) involved in the coupling reaction is described in which two proteins, Orf14 and Orf16, encoded by the dynemicin biosynthetic gene cluster, are specifically isolated. Deletion of orf14 from the genome abolished dynemicin production accompanied by a 3-fold increased accumulation of the iodoanthracene coupling partner, indicating the plausible involvement of this protein in the heterodimerization process. On the other hand, the deletion of orf16 only reduced dynemicin production to 55%, implying a noncatalytic, auxiliary role of the protein. Structural comparisons using AlphaFold imply key similarities between Orf14 and X-ray crystal structures of several proteins from enediyne BGCs believed to bind hydrophobic polyene or enediyne motifs suggest Orf14 templates aryl C-N bond formation during the central heterodimerization in dynemicin biosynthesis.
Collapse
Affiliation(s)
- Paramita Pal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jamie R Alley
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin. Appl Environ Microbiol 2022; 88:e0120822. [PMID: 36350133 PMCID: PMC9746310 DOI: 10.1128/aem.01208-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 μg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.
Collapse
|
14
|
Men P, Geng C, Zhang X, Zhang W, Xie L, Feng D, Du S, Wang M, Huang X, Lu X. Biosynthesis mechanism, genome mining and artificial construction of echinocandin O-sulfonation. Metab Eng 2022; 74:160-167. [DOI: 10.1016/j.ymben.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
15
|
Gui C, Kalkreuter E, Liu YC, Adhikari A, Teijaro CN, Yang D, Chang C, Shen B. Intramolecular C–C Bond Formation Links Anthraquinone and Enediyne Scaffolds in Tiancimycin Biosynthesis. J Am Chem Soc 2022; 144:20452-20462. [DOI: 10.1021/jacs.2c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Ajeeth Adhikari
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | | | | | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ben Shen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Im JH, Shin D, Ban YH, Byun WS, Bae ES, Lee D, Du YE, Cui J, Kwon Y, Nam SJ, Cha S, Lee SK, Yoon YJ, Oh DC. Targeted Discovery of an Enediyne-Derived Cycloaromatized Compound, Jejucarboside A, from a Marine Actinomycete. Org Lett 2022; 24:7188-7193. [PMID: 36165456 DOI: 10.1021/acs.orglett.2c02934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.
Collapse
Affiliation(s)
- Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Hee Ban
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghoon Lee
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Functionalized 10-Membered Aza- and Oxaenediynes through the Nicholas Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186071. [PMID: 36144808 PMCID: PMC9502870 DOI: 10.3390/molecules27186071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands.
Collapse
|
18
|
Zhu M, Zhang F, Gan T, Lin J, Duan Y, Zhu X. Deciphering the pathway-specific regulatory network for production of ten-membered enediyne Tiancimycins in Streptomyces sp. CB03234-S. Microb Cell Fact 2022; 21:188. [PMID: 36088456 PMCID: PMC9464397 DOI: 10.1186/s12934-022-01916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The anthraquinone-fused 10-membered enediynes (AFEs), represented by tiancimycins (TNMs), possess a unique structural feature and promising potentials as payloads of antitumor antibody–drug conjugates. Despite many efforts, the insufficient yields remain a practical challenge for development of AFEs. Recent studies have suggested a unified basic biosynthetic route for AFEs, those core genes involved in the formation of essential common AFE intermediates, together with multiple regulatory genes, are highly conserved among the reported biosynthetic gene clusters (BGCs) of AFEs. The extreme cytotoxicities of AFEs have compelled hosts to evolve strict regulations to control their productions, but the exact roles of related regulatory genes are still uncertain. Results In this study, the genetic validations of five putative regulatory genes present in the BGC of TNMs revealed that only three (tnmR1, tnmR3 and tnmR7) of them were involved in the regulation of TNMs biosynthesis. The bioinformatic analysis also revealed that they represented three major but distinct groups of regulatory genes conserved in all BGCs of AFEs. Further transcriptional analyses suggested that TnmR7 could promote the expressions of core enzymes TnmD/G and TnmN/O/P, while TnmR3 may act as a sensor kinase to work with TnmR1 and form a higher class unconventional orphan two-component regulatory system, which dynamically represses the expressions of TnmR7, core enzymes TnmD/G/J/K1/K2 and auxiliary proteins TnmT2/S2/T1/S1. Therefore, the biosynthesis of TNMs was stringently restricted by this cascade regulatory network at early stage to ensure the normal cell growth, and then partially released at the stationary phase for product accumulation. Conclusion The pathway-specific cascade regulatory network consisting with TnmR3/R1 and TnmR7 was deciphered to orchestrate the production of TNMs. And it could be speculated as a common regulatory mechanism for productions of AFEs, which shall provide us new insights in future titer improvement of AFEs and potential dynamic regulatory applications in synthetic biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01916-z.
Collapse
|
19
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
20
|
Abstract
Covering: up to the end of July, 2021Anthraquinone-fused enediynes (AFEs) are a subfamily of enediyne natural products. Dynemicin A (DYN A), the first member of the AFE family, was discovered more than thirty years ago. Subsequently, extensive studies have been reported on the mode of action and the interactions of AFEs with DNA using DYN A as a model. However, progress in the discovery, biosynthesis and clinical development of AFEs has been limited for a long time. In the past five years, four new AFEs have been discovered and significant progress has been made in the biosynthesis of AFEs, especially on the biogenesis of the anthraquinone moiety and their tailoring steps. Moreover, the streamlined total synthesis of AFEs and their analogues boosts the preparation of AFE-based linker-drugs, thus enabling the development of AFE-based antibody-drug conjugates (ADCs). This review summarizes the discovery, mechanism of action, biosynthesis, total synthesis and preclinical studies of AFEs.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, China.
| |
Collapse
|
21
|
Voser TM, Campbell MD, Carroll AR. How different are marine microbial natural products compared to their terrestrial counterparts? Nat Prod Rep 2021; 39:7-19. [PMID: 34651634 DOI: 10.1039/d1np00051a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1877 to 2020A key challenge in natural products research is the selection of biodiversity to yield novel chemistry. Recently, marine microorganisms have become a preferred source. But how novel are marine microorganism natural products compared to those reported from terrestrial microbes? Cluster analysis of chemical fingerprints and molecular scaffold analysis of 55 817 compounds reported from marine and terrestrial microorganisms, and marine macro-organisms showed that 76.7% of the compounds isolated from marine microorganisms are closely related to compounds isolated from terrestrial microorganisms. Only 14.3% of marine microorganism natural products are unique when marine macro-organism natural products are also considered. Studies targeting marine specific and understudied microbial phyla result in a higher likelihood of finding marine specific compounds, whereas the depth and geographic location of microorganism collection have little influence. We recommend marine targeted strain isolation, incorporating early use of genomic sequencing to guide strain selection, innovation in culture media and cultivation techniques and the application of cheminformatics tools to focus on unique natural product diversity, rather than the dereplication of known compounds.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Max D Campbell
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Australian Rivers Institute-Coasts and Estuaries, Griffith University, Nathan, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
22
|
Wang Z, Sun R, Li M, Liu L, Duan Y, Huang Y. Yield improvement of enediyne yangpumicins in Micromonospora yangpuensis through ribosome engineering and fermentation optimization. Biotechnol J 2021; 16:e2100250. [PMID: 34473904 DOI: 10.1002/biot.202100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Yangpumicins (YPMs), for example, YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (∼1 mg L-1 ) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs. One gentamicin-resistant M. yangpuensis DSM 45577 strain (MY-G-1) showed higher YPMs production (7.4 ± 1.0 mg L-1 ), while it exhibits delayed sporulation and slender mycelium under scanning electron microscopy. Whole genome re-sequencing of MY-G-1 reveals several deletion and single nucleotide polymorphism mutations, which were confirmed by PCR and DNA sequencing. Further Box-Behnken experiment and regression analysis determined that the optimal medium concentrations of soluble starch, D-mannitol, and pharmamedia for YPMs production in shaking flasks (10.0 ± 0.8 mg L-1 ). Finally, the total titer of YPM A/F/G in MY-G-1 reached to 15.0 ± 2.5 mg L-1 in 3 L fermenters, which was about 11-fold higher than the original titer of 1.3 ± 0.3 mg L-1 in wild-type strain. Our study may be instrumental to develop YPMs into a clinical anticancer drug, and inspire the use of these multifaceted strategies for yield improvement in Micromonospora species. GRAPHICAL ABSTRACT LAY SUMMARY: ???
Collapse
Affiliation(s)
- Zilong Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Runze Sun
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Miao Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| |
Collapse
|
23
|
Ma GL, Tran HT, Low ZJ, Candra H, Pang LM, Cheang QW, Fang M, Liang ZX. Pathway Retrofitting Yields Insights into the Biosynthesis of Anthraquinone-Fused Enediynes. J Am Chem Soc 2021; 143:11500-11509. [PMID: 34293863 DOI: 10.1021/jacs.1c03911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anthraquinone-fused enediynes (AQEs) are renowned for their distinctive molecular architecture, reactive enediyne warhead, and potent anticancer activity. Although the first members of AQEs, i.e., dynemicins, were discovered three decades ago, how their nitrogen-containing carbon skeleton is synthesized by microbial producers remains largely a mystery. In this study, we showed that the recently discovered sungeidine pathway is a "degenerative" AQE pathway that contains upstream enzymes for AQE biosynthesis. Retrofitting the sungeidine pathway with genes from the dynemicin pathway not only restored the biosynthesis of the AQE skeleton but also produced a series of novel compounds likely as the cycloaromatized derivatives of chemically unstable biosynthetic intermediates. The results suggest a cascade of highly surprising biosynthetic steps leading to the formation of the anthraquinone moiety, the hallmark C8-C9 linkage via alkyl-aryl cross-coupling, and the characteristic epoxide functionality. The findings provide unprecedented insights into the biosynthesis of AQEs and pave the way for examining these intriguing biosynthetic enzymes.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
24
|
Mao N, Aggarwal N, Poh CL, Cho BK, Kondo A, Liu C, Yew WS, Chang MW. Future trends in synthetic biology in Asia. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10038. [PMID: 36618442 PMCID: PMC9744534 DOI: 10.1002/ggn2.10038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted. The potential barriers to the sustainable development of the field, including inadequate infrastructure and policies, with suggestions to overcome these by building public-private partnerships, more effective multi-lateral collaborations and well-developed governance framework, are presented. Finally, the roles of technology, education and regulation in mitigating potential biosecurity risks are examined. Through these discussions, stakeholders from different groups, including academia, industry and government, are expectantly better positioned to contribute towards the establishment of innovation and bio-economy hubs in Asia.
Collapse
Affiliation(s)
- Ning Mao
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| | - Byung Kwan Cho
- Department of Biological Sciences, and KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, and Engineering Biology Research CenterKobe UniversityKobeJapan
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
25
|
Li X, Lv JM, Hu D, Abe I. Biosynthesis of alkyne-containing natural products. RSC Chem Biol 2021; 2:166-180. [PMID: 34458779 PMCID: PMC8341276 DOI: 10.1039/d0cb00190b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
26
|
Adhikari A, Shen B, Rader C. Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates. Antib Ther 2021; 4:1-15. [PMID: 33554043 PMCID: PMC7850032 DOI: 10.1093/abt/tbab001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calicheamicin, the payload of the antibody-drug-conjugates (ADCs) gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®), belongs to the class of enediyne natural products. Since the isolation and structural determination of the neocarzinostatin chromophore in 1985, the enediynes have attracted considerable attention for their value as DNA damaging agents in cancer chemotherapy. Due to their non-discriminatory cytotoxicity towards both cancer and healthy cells, the clinical utilization of enediyne natural products relies on conjugation to an appropriate delivery system, such as an antibody. Here we review the current landscape of enediynes as payloads of first-generation and next-generation ADCs.
Collapse
Affiliation(s)
- Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
27
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as flavipeside A from Aspergillus flavipes.
Collapse
|