1
|
Liu Y, Wang Y, Bao D, Chen H, Gong M, Sun S, Zou G. Cross-Kingdom DNA Methylation Dynamics: Comparative Mechanisms of 5mC/6mA Regulation and Their Implications in Epigenetic Disorders. BIOLOGY 2025; 14:461. [PMID: 40427651 PMCID: PMC12108942 DOI: 10.3390/biology14050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns-characterized by spatial-temporal dysregulation and stochastic molecular noise-serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Ying Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| |
Collapse
|
2
|
Schnable BL, Schaich MA, Roginskaya V, Leary LP, Weaver TM, Freudenthal BD, Drohat AC, Van Houten B. Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine. Nat Commun 2024; 15:9226. [PMID: 39455577 PMCID: PMC11512004 DOI: 10.1038/s41467-024-53497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base excision repair is the main pathway involved in active DNA demethylation. 5-formylcytosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we study TDG in the presence and absence of 5-formylcytosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of base modifications. TDG active site variants and truncated N-terminus, reveals these variants alter base modification search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG is found to either bypass, colocalize with, or encounter but not bypass the nucleosome. Truncating the N-terminus reduces the number of interactions with the nucleosome. Our findings provide mechanistic insights into how TDG searches for modified DNA bases in chromatin.
Collapse
Affiliation(s)
- Brittani L Schnable
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liam P Leary
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bennett Van Houten
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Pidugu LS, Servius HW, Espinosa KB, Cook ME, Varney KM, Drohat AC. Sumoylation of thymine DNA glycosylase impairs productive binding to substrate sites in DNA. J Biol Chem 2024; 300:107902. [PMID: 39426728 PMCID: PMC11602971 DOI: 10.1016/j.jbc.2024.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The base excision repair enzyme thymine DNA glycosylase (TDG) protects against mutations by removing thymine or uracil from guanine mispairs and functions in active DNA demethylation by excising 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Post-translational modification of TDG by SUMO (small ubiquitin-like modifier) reduces its glycosylase activity but the mechanism remains unclear. We investigated this problem using biochemical and biophysical approaches and a TDG construct comprising residues 82 to 340 (of 410) that includes the SUMOylation site and the motif for non-covalent SUMO binding. Single turnover kinetics experiments were collected at multiple enzyme concentrations ([E]) and the hyperbolic dependence of activity (kobs) on [E] yielded the maximal glycosylase activity (kmax), the enzyme concentration giving half-maximal activity (K0.5), and the catalytic efficiency (kmax/K0.5). Sumoylation of TDG (or TDG82-340) causes large reductions in catalytic efficiency for G·T, G·U, G·fC, and G·caC DNA substrates, due largely to weakened substrate affinity (increased K0.5). 19F NMR experiments show that sumoylation of TDG82-340 reduces productive binding to G·U mispairs and dramatically impairs binding to G·T mispairs. A mutation in the TDG SUMO-interacting motif (SIM), E310Q, shown previously to perturb the noncovalent binding of SUMO to unmodified TDG, rescues the glycosylase activity of sumoylated TDG82-340. Similarly, NMR studies show the mutation restores the productive binding of sumoylated TDG82-340 to G·U and G·T pairs. Together, the results indicate that intramolecular SUMO-SIM interactions mediate the adverse effect of sumoylation on TDG activity and suggest a model whereby the disruption of SUMO-SIM interactions enables productive binding of sumoylated TDG to substrate sites in DNA.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hardler W Servius
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kurt B Espinosa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary E Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Schnable BL, Schaich MA, Roginskaya V, Leary LP, Weaver TM, Freudenthal BD, Drohat AC, Houten BV. Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560925. [PMID: 37873231 PMCID: PMC10592968 DOI: 10.1101/2023.10.04.560925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Base excision repair is the main pathway involved in active DNA demethylation. 5-formylctyosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we studied TDG in the presence and absence of 5-formylctyosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. We probed TDG active site variants and truncated N-terminus revealing how these variants alter the lesion search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG was found to either bypass, colocalize with, or encounter but not bypass the nucleosome. However, truncating the N-terminus reduced the number of interactions with the nucleosome. Our findings provide unprecedented mechanistic insights into how TDG searches for DNA lesions in chromatin.
Collapse
|
5
|
Cai Q, Wang Y, Ning Y, Jie G. "Two in one": A novel DNA cascade amplification strategy for trace detection of dual targets. Talanta 2024; 273:125978. [PMID: 38521021 DOI: 10.1016/j.talanta.2024.125978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
According to the characteristics of DNA programming, the cascaded nucleic acid amplification technology with larger output can overcome the problem of insufficient sensitivity of single nucleic acid amplification technology, and it combines the advantages of two or even multiple nucleic acid amplification technologies at the same time. In this work, a novel cascade signal amplification strategy with strand displacement amplification (SDA) and cascade hybridization chain reaction (HCR) was proposed for trace detection of hAAG and VEGF165. HAAG-induced SDA produced a large amount of S2 to open H2 on Polystyrene (PS) nanospheres, thereby triggering cascade HCR to form DNA dendritic nanostructures with rich fluorescence (FL) signal probes (565 nm). It could realize the amplification of FL signals for the detection of hAAG. Moreover, many doxorubicin (Dox) were loaded into the GC bases of DNA dendritic nanostructures, and its FL signal was effectively shielded. VEGF165 specifically bound to its aptamer to form G-quadruplex structures, which released Dox to produce a high FL signal (590 nm) for detection of VEGF165. This work developed a unique multifunctional DNA dendritic nanostructure fluorescence probe, and cleverly designed a new "On-off" switch strategy for sensitive trace detection of cancer markers.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuanzhen Ning
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Wang WJ, Wang T, Zhao Y, Li BN, Chen DZ. Theoretical Insights into N-Glycoside Bond Cleavage of 5-Carboxycytosine by Thymine DNA Glycosylase: A QM/MM Study. J Phys Chem B 2024; 128:4621-4630. [PMID: 38697651 DOI: 10.1021/acs.jpcb.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.
Collapse
Affiliation(s)
- Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Tian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bi-Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
7
|
Servius HW, Pidugu LS, Sherman ME, Drohat AC. Rapid excision of oxidized adenine by human thymine DNA glycosylase. J Biol Chem 2022; 299:102756. [PMID: 36460098 PMCID: PMC9800633 DOI: 10.1016/j.jbc.2022.102756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Oxidation of DNA bases generates mutagenic and cytotoxic lesions that are implicated in cancer and other diseases. Oxidative base lesions, including 7,8-dihydro-8-oxoguanine, are typically removed through base excision repair. In addition, oxidized deoxynucleotides such as 8-oxo-dGTP are depleted by sanitizing enzymes to preclude DNA incorporation. While pathways that counter threats posed by 7,8-dihydro-8-oxoguanine are well characterized, mechanisms protecting against the major adenine oxidation product, 7,8-dihydro-8-oxoadenine (oxoA), are poorly understood. Human DNA polymerases incorporate dGTP or dCTP opposite oxoA, producing mispairs that can cause A→C or A→G mutations. oxoA also perturbs the activity of enzymes acting on DNA and causes interstrand crosslinks. To inform mechanisms for oxoA repair, we characterized oxoA excision by human thymine DNA glycosylase (TDG), an enzyme known to remove modified pyrimidines, including deaminated and oxidized forms of cytosine and 5-methylcystosine. Strikingly, TDG excises oxoA from G⋅oxoA, A⋅oxoA, or C⋅oxoA pairs much more rapidly than it acts on the established pyrimidine substrates, whereas it exhibits comparable activity for T⋅oxoA and pyrimidine substrates. The oxoA activity depends strongly on base pairing and is 370-fold higher for G⋅oxoA versus T⋅oxoA pairs. The intrinsically disordered regions of TDG contribute minimally to oxoA excision, whereas two conserved residues (N140 and N191) are catalytically essential. Escherichia coli mismatch-specific uracil DNA-glycosylase lacks significant oxoA activity, exhibiting excision rates 4 to 5 orders of magnitude below that of its ortholog, TDG. Our results reveal oxoA as an unexpectedly efficient purine substrate for TDG and underscore the large evolutionary divergence of TDG and mismatch-specific uracil DNA-glycosylase.
Collapse
|
8
|
Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase. DNA Repair (Amst) 2022; 119:103408. [PMID: 36179537 DOI: 10.1016/j.dnarep.2022.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.
Collapse
|
9
|
Baljinnyam T, Sowers ML, Hsu CW, Conrad JW, Herring JL, Hackfeld LC, Sowers LC. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming. PLoS One 2022; 17:e0273509. [PMID: 36037209 PMCID: PMC9423628 DOI: 10.1371/journal.pone.0273509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James W. Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linda C. Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang L, Song K, Yu J, Da LT. Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process. Acta Biochim Biophys Sin (Shanghai) 2022; 54:796-806. [PMID: 35593467 PMCID: PMC9828053 DOI: 10.3724/abbs.2022050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylase, as one member of DNA repair machineries, plays an essential role in correcting mismatched/damaged DNA nucleotides by cleaving the N-glycosidic bond between the sugar and target nucleobase through the base excision repair (BER) pathways. Efficient corrections of these DNA lesions are critical for maintaining genome integrity and preventing premature aging and cancers. The target-site searching/recognition mechanisms and the subsequent conformational dynamics of DNA glycosylase, however, remain challenging to be characterized using experimental techniques. In this review, we summarize our recent studies of sequential structural changes of thymine DNA glycosylase (TDG) during the DNA repair process, achieved mostly by molecular dynamics (MD) simulations. Computational simulations allow us to reveal atomic-level structural dynamics of TDG as it approaches the target-site, and pinpoint the key structural elements responsible for regulating the translocation of TDG along DNA. Subsequently, upon locating the lesions, TDG adopts a base-flipping mechanism to extrude the mispaired nucleobase into the enzyme active-site. The constructed kinetic network model elucidates six metastable states during the base-extrusion process and suggests an active role of TDG in flipping the intrahelical nucleobase. Finally, the molecular mechanism of product release dynamics after catalysis is also summarized. Taken together, we highlight to what extent the computational simulations advance our knowledge and understanding of the molecular mechanism underlying the conformational dynamics of TDG, as well as the limitations of current theoretical work.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jin Yu
- Department of Physics and AstronomyDepartment of ChemistryNSF-Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCA92697USA
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34207348; E-mail:
| |
Collapse
|
11
|
Beierlein F, Volkenandt S, Imhof P. Oxidation Enhances Binding of Extrahelical 5-Methyl-Cytosines by Thymine DNA Glycosylase. J Phys Chem B 2022; 126:1188-1201. [PMID: 35109648 DOI: 10.1021/acs.jpcb.1c09896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA repair protein thymine DNA glycosylase (TDG) removes mispaired or damaged bases, such as oxidized methyl-cytosine, from DNA by cleavage of the glycosidic bond between the sugar and the target base flipped into the enzyme's active site. The enzyme is active against formyl-cytosine and carboxyl-cytosine, whereas the lower oxidized hydroxymethyl-cytosine and methyl-cytosine itself are not processed by the enzyme. Molecular dynamics simulations with thermodynamic integration of TDG complexed to DNA carrying one of four different (oxidized) methyl-cytosine bases in extrahelcial conformation, methyl-cytosine (mC), hydroxymethyl-cytosine (hmC), formyl-cytosine (fC), or carboxyl-cytosine (caC), show a more favorable binding affinity of the higher oxidized forms, fC and caC, than the nonsubstrate bases hmC and mC. Despite rather comparable, reaction-competent conformations of the flipped bases in the active site of the enzyme, more and stronger interactions with active site residues account for the preferred binding of the higher oxidized bases. Binding of the negatively charged caC and the neutral fC are strengthened by interactions with positively charged His151. Our calculated proton affinities find this protonation state of His151 the preferred one in the presence of caC and conceivable in the presence of fC as well as increasing the binding affinity toward the two bases. Discrimination of the substrate bases is further achieved by the backbone of Tyr152 that forms a strong hydrogen bond to the carboxyl and formyl oxygen atoms of caC and fC, respectively, a contact that is completely lacking in mC and much weaker in hmC. Overall, our computational results indicate that the enzyme discriminates the different oxidation forms of methyl-cytosine already at the formation of the extrahelical complexes.
Collapse
Affiliation(s)
- Frank Beierlein
- Department for Chemistry and Pharmacy Computer Chemistry Centre, Friedrich-Alexander University (FAU) Erlangen Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.,Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander University (FAU) Erlangen Nürnberg, Martensstraße 1, 91058 Erlangen, Germany
| | - Senta Volkenandt
- Department for Chemistry and Pharmacy Computer Chemistry Centre, Friedrich-Alexander University (FAU) Erlangen Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.,Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Petra Imhof
- Department for Chemistry and Pharmacy Computer Chemistry Centre, Friedrich-Alexander University (FAU) Erlangen Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.,Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
12
|
Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:295-315. [DOI: 10.1007/978-3-031-11454-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
15
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomic Decarboxylation of 5-Carboxy-2'-deoxycytidine. Angew Chem Int Ed Engl 2021; 60:23207-23211. [PMID: 34432359 PMCID: PMC8596745 DOI: 10.1002/anie.202109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Cellular DNA is composed of four canonical nucleosides (dA, dC, dG and T), which form two Watson-Crick base pairs. In addition, 5-methylcytosine (mdC) may be present. The methylation of dC to mdC is known to regulate transcriptional activity. Next to these five nucleosides, the genome, particularly of stem cells, contains three additional dC derivatives, which are formed by stepwise oxidation of the methyl group of mdC with the help of Tet enzymes. These are 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC). It is believed that fdC and cadC are converted back into dC, which establishes an epigenetic control cycle that starts with methylation of dC to mdC, followed by oxidation and removal of fdC and cadC. While fdC was shown to undergo intragenomic deformylation to give dC directly, a similar decarboxylation of cadC was postulated but not yet observed on the genomic level. By using metabolic labelling, we show here that cadC decarboxylates in several cell types, which confirms that both fdC and cadC are nucleosides that are directly converted back to dC within the genome by C-C bond cleavage.
Collapse
Affiliation(s)
- Ewelina Kamińska
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Eva Korytiaková
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Andreas Reichl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Markus Müller
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstrasse 5–1381377MunichGermany
| |
Collapse
|
16
|
Kamińska E, Korytiaková E, Reichl A, Müller M, Carell T. Intragenomische Decarboxylierung von 5‐Carboxy‐2′‐desoxycytidin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewelina Kamińska
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Eva Korytiaková
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Andreas Reichl
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Markus Müller
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
17
|
Interaction of Thymine DNA Glycosylase with Oxidised 5-Methyl-cytosines in Their Amino- and Imino-Forms. Molecules 2021; 26:molecules26195728. [PMID: 34641273 PMCID: PMC8510025 DOI: 10.3390/molecules26195728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is an enzyme of the base excision repair mechanism and removes damaged or mispaired bases from DNA via hydrolysis of the glycosidic bond. Specificity is of high importance for such a glycosylase, so as to avoid the damage of intact DNA. Among the substrates reported for TDG are mispaired uracil and thymine but also formyl-cytosine and carboxyl-cytosine. Methyl-cytosine and hydroxylmethyl-cytosine are, in contrast, not processed by the TDG enzyme. We have in this work employed molecular dynamics simulations to explore the conformational dynamics of DNA carrying a formyl-cytosine or carboxyl-cytosine and compared those to DNA with the non-cognate bases methyl-cytosine and hydroxylmethyl-cytosine, as amino and imino tautomers. Whereas for the mispairs a wobble conformation is likely decisive for recognition, all amino tautomers of formyl-cytosine and carboxyl-cytosine exhibit the same Watson–Crick conformation, but all imino tautomers indeed form wobble pairs. The conformational dynamics of the amino tautomers in free DNA do not exhibit differences that could be exploited for recognition, and also complexation to the TDG enzyme does not induce any alteration that would indicate preferable binding to one or the other oxidised methyl-cytosine. The imino tautomers, in contrast, undergo a shift in the equilibrium between a closed and a more open, partially flipped state, towards the more open form upon complexation to the TDG enzyme. This stabilisation of the more open conformation is most pronounced for the non-cognate bases methyl-cytosine and hydroxyl-cytosine and is thus not a likely mode for recognition. Moreover, calculated binding affinities for the different forms indicate the imino forms to be less likely in the complexed DNA. These findings, together with the low probability of imino tautomers in free DNA and the indifference of the complexed amino tautomers, suggest that discrimination of the oxidised methyl-cytosines does not take place in the initial complex formation.
Collapse
|
18
|
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Structural Insights into the Mechanism of Base Excision by MBD4. J Mol Biol 2021; 433:167097. [PMID: 34107280 PMCID: PMC8286355 DOI: 10.1016/j.jmb.2021.167097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary Bright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | | | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Schelter F, Kirchner A, Traube FR, Müller M, Steglich W, Carell T. 5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks. Chemistry 2021; 27:8100-8104. [PMID: 33769637 PMCID: PMC8252671 DOI: 10.1002/chem.202100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/20/2023]
Abstract
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
Collapse
Affiliation(s)
- Florian Schelter
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Angie Kirchner
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeCB2 0REUK
| | | | - Markus Müller
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Wolfgang Steglich
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thomas Carell
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
20
|
Tian J, Wang L, Da LT. Atomic resolution of short-range sliding dynamics of thymine DNA glycosylase along DNA minor-groove for lesion recognition. Nucleic Acids Res 2021; 49:1278-1293. [PMID: 33469643 PMCID: PMC7897493 DOI: 10.1093/nar/gkaa1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Thymine DNA glycosylase (TDG), as a repair enzyme, plays essential roles in maintaining the genome integrity by correcting several mismatched/damaged nucleobases. TDG acquires an efficient strategy to search for the lesions among a vast number of cognate base pairs. Currently, atomic-level details of how TDG translocates along DNA as it approaches the lesion site and the molecular mechanisms of the interplay between TDG and DNA are still elusive. Here, by constructing the Markov state model based on hundreds of molecular dynamics simulations with an integrated simulation time of ∼25 μs, we reveal the rotation-coupled sliding dynamics of TDG along a 9 bp DNA segment containing one G·T mispair. We find that TDG translocates along DNA at a relatively faster rate when distant from the lesion site, but slows down as it approaches the target, accompanied by deeply penetrating into the minor-groove, opening up the mismatched base pair and significantly sculpturing the DNA shape. Moreover, the electrostatic interactions between TDG and DNA are found to be critical for mediating the TDG translocation. Notably, several uncharacterized TDG residues are identified to take part in regulating the conformational switches of TDG occurred in the site-transfer process, which warrants further experimental validations.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
21
|
DeNizio JE, Dow BJ, Serrano JC, Ghanty U, Drohat AC, Kohli RM. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. J Mol Biol 2021; 433:166877. [PMID: 33561435 DOI: 10.1016/j.jmb.2021.166877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.
Collapse
Affiliation(s)
- Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA; Department of Medicine, Department of Biochemistry & Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA
| | - Blaine J Dow
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Juan C Serrano
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA; Department of Medicine, Department of Biochemistry & Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA
| | - Uday Ghanty
- Department of Medicine, Department of Biochemistry & Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Rahul M Kohli
- Department of Medicine, Department of Biochemistry & Biophysics, Perelman School of Medicine, Philadelphia, PA 19147, USA.
| |
Collapse
|
22
|
Jeong YER, Lenz SAP, Wetmore SD. DFT Study on the Deglycosylation of Methylated, Oxidized, and Canonical Pyrimidine Nucleosides in Water: Implications for Epigenetic Regulation and DNA Repair. J Phys Chem B 2020; 124:2392-2400. [PMID: 32108483 DOI: 10.1021/acs.jpcb.0c00783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (B3LYP) was used to characterize the kinetics and thermodynamics of the (nonenzymatic) deglycosylation in water for a variety of 2'-deoxycytidine (dC) and 2'-deoxyuridine (dU) nucleoside derivatives that differ in methylation and subsequent oxidation of the C5 substituent. A range of computational models are considered that combine implicit and explicit solvation of the nucleophile and nucleobase. Regardless of the model implemented, our calculations reveal that the glycosidic bond in dC is inherently more stable than that in dU. Furthermore, C5 methylation of either pyrimidine and subsequent oxidation of the methyl group yield overall small changes to the Gibbs reaction energy profiles and thereby preserve lower deglycosylation barriers for the dC compared to those for the dU nucleoside derivatives. However, hydrolytic deglycosylation becomes significantly more energetically favorable when 5-methyl-dC (5m-dC) undergoes two or three rounds of oxidation, with the Gibbs energy barrier decreasing and the reaction becoming more exergonic by up to 40 kJ/mol. In fact, two or three oxidation reactions from 5m-dC result in a deglycosylation barrier similar to that for dU, as well as those for the associated C5-methylated (2'-deoxythymidine) and oxidized (5-hydroxymethyl-dU) derivatives. These predicted trends in the inherent deglycosylation energetics in water directly correlate with the previously reported activity of thymine DNA glycosylase (TDG), which cleaves the glycosidic bond in select dC nucleosides as part of epigenetic regulation and in dU variants as part of DNA repair. Thus, our data suggests that fundamental differences in the intrinsic reactivity of the pyrimidine nucleosides help regulate the function of human enzymes that maintain cellular integrity.
Collapse
Affiliation(s)
- Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
23
|
Sanstead PJ, Ashwood B, Dai Q, He C, Tokmakoff A. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. J Phys Chem B 2020; 124:1160-1174. [PMID: 31986043 PMCID: PMC7136776 DOI: 10.1021/acs.jpcb.9b11511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The naturally occurring nucleobase 5-methylcytosine (mC) and its oxidized derivatives 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) play important roles in epigenetic regulation and, along with cytosine (C), represent nucleobases currently implicated in the active cytosine demethylation pathway. Despite considerable interest in these modified bases, their impact on the thermodynamic stability of double-stranded DNA (dsDNA) remains ambiguous and their influence on hybridization kinetics and dynamics is even less well-understood. To address these unknowns, we employ steady-state and time-resolved infrared spectroscopy to measure the influence of cytosine modification on the thermodynamics and kinetics of hybridization by assessing the impact on local base pairing dynamics, shifts in the stability of the duplex state, and changes to the hybridization transition state. Modification with mC leads to more tightly bound base pairing below the melting transition and stabilizes the duplex relative to canonical DNA, but the free energy barrier to dehybridization at physiological temperature is nevertheless reduced slightly. Both hmC and fC lead to an increase in local base pair fluctuations, a reduction in the cooperativity of duplex melting, and a lowering of the dissociation barrier, but these effects are most pronounced when the 5-position is formylated. The caC nucleobase demonstrates little impact on dsDNA under neutral conditions, but we find that this modification can dynamically switch between C-like and fC-like behavior depending on the protonation state of the 5-position carboxyl group. Our results provide a consistent thermodynamic and kinetic framework with which to describe the modulation of the physical properties of double-stranded DNA containing these modified nucleobases.
Collapse
Affiliation(s)
- Paul J. Sanstead
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Ashwood B, Sanstead PJ, Dai Q, He C, Tokmakoff A. 5-Carboxylcytosine and Cytosine Protonation Distinctly Alter the Stability and Dehybridization Dynamics of the DNA Duplex. J Phys Chem B 2020; 124:627-640. [PMID: 31873021 DOI: 10.1021/acs.jpcb.9b11510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Applications associated with nucleobase protonation events are grounded in their fundamental impact on DNA thermodynamics, structure, and hybridization dynamics. Of the canonical nucleobases, N3 protonation of cytosine (C) is the most widely utilized in both biology and nanotechnology. Naturally occurring C derivatives that shift the N3 pKa introduce an additional level of tunability. The epigenetic nucleobase 5-carboxylcytosine (caC) presents a particularly interesting example since this derivative forms Watson-Crick base pairs of similar stability and displays pH-dependent behavior over the same range as the canonical nucleobase. However, the titratable group in caC corresponds to the exocyclic carboxyl group rather than N3, and the implications of these divergent protonation events toward DNA hybridization thermodynamics, kinetics, and base pairing dynamics remain poorly understood. Here, we study the pH dependence of these physical properties using model oligonucleotides containing C and caC with FTIR and temperature-jump IR spectroscopy. We demonstrate that N3 protonation of C completely disrupts duplex stability, leading to large shifts in the duplex/single-strand equilibrium, a reduction in the cooperativity of melting, and an acceleration in the rate of duplex dissociation. In contrast, while increasing 5-carboxyl protonation in caC-containing duplexes induces an increase in base pair fluctuations, the DNA duplex can tolerate substantial protonation without significant perturbation to the duplex/single-strand equilibrium. However, 5-carboxyl protonation has a large impact on hybridization kinetics by reducing the transition state free energy. Our thermodynamic and kinetic analysis provides new insight on the impact of two divergent protonation mechanisms in naturally occurring nucleobases on the biophysical properties of DNA.
Collapse
|