1
|
Sellin M, Watson JD, Fischer J, Ball GE, Field LD, Krossing I. Promoting Alkane Binding: Crystallization of a Cationic Manganese(I)-Pentane σ-Complex from Solution. Angew Chem Int Ed Engl 2025:e202507494. [PMID: 40289579 DOI: 10.1002/anie.202507494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Transition metal-alkane σ-complexes are key intermediates in C-H activation and, until now, analysis of these species has been restricted to either the solution OR the solid state. Here we present a synthetic methodology that converts Mn2(CO)10 in a noncoordinating solvent environment to [Mn(CO)5]+ at room temperature, and this species binds n-pentane as the strongest interacting ligand available. Three isomers of the n-pentane σ-complexes were studied in detail by solution NMR-spectroscopy at low temperature. Two isomers of [Mn(CO)5(n-pentane)]+ crystallize from solution at room temperature and their structures were determined by single crystal X-ray crystallography. The oxidation of metal complex dimers in solution to generate reactive metal cations, which bind alkanes as the strongest available ligand, is a new and probably general approach to generate metal-alkane σ-complexes.
Collapse
Affiliation(s)
- Malte Sellin
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - James D Watson
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia Fischer
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Graham E Ball
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leslie D Field
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Capra NE, Trinh BB, Girolami GS. Weakly Bound but Strongly Interacting: The Structures, Stabilities, and Dynamics of Osmium(II) Ethane, Propane, and Butane Complexes. J Am Chem Soc 2025; 147:7377-7390. [PMID: 39994835 DOI: 10.1021/jacs.4c13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Low-temperature protonation of the osmium(II) alkyl compounds (C5Me5)Os(dfmpm)R, where dfmpm = (F3C)2PCH2P(CF3)2 and R = ethyl, n-propyl, n-butyl, or i-butyl, generates σ-ethane, σ-propane, σ-n-butane, and σ-i-butane complexes. The alkane dissociation barriers are ∼13.2 kcal mol-1 or about 0.5 kcal mol-1 larger than that of the previously described methane complex [(C5Me5)Os(dfmpm)(CH4)]+. The alkane ligands bind to osmium through one methyl group, which exchanges slowly with the unbound terminal methyl group(s). Within the bound methyl group, one bridging hydrogen atom interacts directly with osmium; it exchanges rapidly with the other two methyl C-H bonds at a rate consistent with a slightly hindered C-C bond rotation. The large difference in 1JCH between the bridging (75 Hz) and terminal (142 Hz) C-H sites is consistent with the view that the 16-electron [(C5Me5)Os(dfmpm)]+ fragment has partially abstracted a hydride group (H-) from the alkane, which confers carbocation (sp2) character to the CH2R portion of the Os-H-CH2R unit. The extent of this distortion and the overall strength of the metal-alkane interaction are correlated with the alkane C-H orbital energies in a manner consistent with covalent metal-ligand bonding. Whereas most ligands can bind to metals with little structural reorganization, an alkane must undergo a significant structural change─weakening of a C-H bond─to become a sufficiently good donor and acceptor to bind to a metal. Collectively, these results show that the binding energies of alkane ligands are small not because the constituent metal-ligand interactions are weak but rather because the reorganization energy needed to form them is large.
Collapse
Affiliation(s)
- Nicolas E Capra
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brian B Trinh
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Modder DK, Scopelliti R, Mazzanti M. Accessing a Highly Reducing Uranium(III) Complex through Cyclometalation. Inorg Chem 2024; 63:9527-9538. [PMID: 38217471 DOI: 10.1021/acs.inorgchem.3c03668] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
U(IV) cyclometalated complexes have shown rich reactivity, but their low oxidation state analogues still remain rare. Herein, we report the isolation of [K(2.2.2-cryptand)][UIII{N(SiMe3)2}2(κ2-C,N-CH2SiMe2NSiMe3)], 1, from the reduction of [UIII{N(SiMe)2}3] with KC8 and 2.2.2-cryptand at room temperature. Cyclic voltammetry studies demonstrate that 1 has a reduction potential similar to that of the previously reported [K(2.2.2-cryptand)][UII{N(SiMe)2}3] (Epc = -2.6 V versus Fc+/0 and Epc = -2.8 V versus Fc+/0, respectively). Complex 1, indeed, shows similar reducing abilities upon reactions with 4,4'-bipyridine, 2,2'-bipyridine, and 1-azidoadamantane. Interestingly, 1 was also found to be the first example of a mononuclear U(III) complex that is capable of reducing pyridine. In addition, it is shown that a wide variety of substrates can be inserted into the U-C bond, forming new U(III) metallacycles. These results highlight that cyclometalated U(III) complexes can serve as versatile precursors for a broad range of reactivity and for assembling a variety of novel chemical architectures.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Bistoni G, Altun A, Wang Z, Neese F. Local Energy Decomposition Analysis of London Dispersion Effects: From Simple Model Dimers to Complex Biomolecular Assemblies. Acc Chem Res 2024; 57:1411-1420. [PMID: 38602396 PMCID: PMC11080063 DOI: 10.1021/acs.accounts.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
ConspectusLondon dispersion (LD) forces are ubiquitous in chemistry, playing a pivotal role in a wide range of chemical processes. For example, they influence the structure of molecular crystals, the selectivity of organocatalytic transformations, and the formation of biomolecular assemblies. Harnessing these forces for chemical applications requires consistent quantification of the LD energy across a broad and diverse spectrum of chemical scenarios. Despite the great progress made in recent years in the development of experimental strategies for LD quantification, quantum chemical methods remain one of the most useful tools in the hand of chemists for the study of these weak interactions. Unfortunately, the accurate quantification of LD effects in complex systems poses many challenges for electronic structure theories. One of the problems stems from the fact that LD forces originate from long-range electronic dynamic correlation, and hence, their rigorous description requires the use of complex, highly correlated wave function-based methods. These methods typically feature a steep scaling with the system size, limiting their applicability to small model systems. Another core challenge lies in disentangling short-range from long-range dynamic correlation, which from a rigorous quantum mechanical perspective is not possible.In this Account, we describe our research endeavors in the development of broadly applicable computational methods for LD quantification in molecular chemistry as well as challenging applications of these schemes in various domains of chemical research. Our strategy lies in the use of local correlation theories to reduce the computational cost associated with complex electronic structure methods while providing at the same time a simple means of decomposition of dynamic correlation into its long-range and short-range components. In particular, the local energy decomposition (LED) scheme at the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) level has emerged as a powerful tool in our research, offering a clear-cut quantitative definition of the LD energy that remains valid across a plethora of different chemical scenarios. Typical applications of this scheme are examined, encompassing protein-ligand interactions and reactivity studies involving many fragments and complex electronic structures. In addition, our research also involves the development of novel cost-effective methodologies, which exploit the LED definition of the LD energy, for LD energy quantification that are, in principle, applicable to systems with thousands of atoms. The Hartree-Fock plus London Dispersion (HFLD) scheme, correcting the HF interaction energy using an approximate CCSD(T)-based LD energy, is a useful, parameter-free electronic structure method for the study of LD effects in systems with hundreds of molecular fragments. However, the usefulness of the LED scheme reaches beyond providing an interpretation of the calculated DLPNO-CCSD(T) or DLPNO-MP2 interaction energies. For example, the dispersion energies obtained from the LED can be fruitfully used in order to parametrize semiempirical dispersion models. We will demonstrate this in the context of an emerging semiempirical method, namely, the Natural Orbital Tied Constructed Hamiltonian (NOTCH) method. NOTCH incorporates LED-derived LD energies and shows promising accuracy at a minimum amount of empiricism. Thus, it holds substantial promise for large and complex systems.
Collapse
Affiliation(s)
- Giovanni Bistoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Ahmet Altun
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Wedal JC, Moore WNG, Lukens WW, Evans WJ. Perplexing EPR Signals from 5f 36d 1 U(II) Complexes. Inorg Chem 2024; 63:2945-2953. [PMID: 38279200 DOI: 10.1021/acs.inorgchem.3c03449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Metal complexes with unpaired electrons in orbitals of different angular momentum quantum numbers (e.g., f and d orbitals) are unusual and opportunities to study the interactions among these electrons are rare. X-band electron paramagnetic resonance (EPR) data were collected at <10 and 77 K on 10 U(II) complexes with 5f36d1 electron configurations and on some analogous Ce(II), Pr(II), and Nd(II) complexes with 4fn5d1 electron configurations. The U(II) compounds unexpectedly display similar two-line axial signals with g|| = 2.04 and g⊥ = 2.00 at 77 K. In contrast, U(II) complexes with 5f4 configurations are EPR-silent. Unlike U(II), the congenic 4f35d1 Nd(II) complex is EPR-silent. The Ce(II) complex with a 4f15d1 configuration is also EPR-silent, but a signal is observed for the Pr(II) complex, which has a 4f25d1 configuration. Whether or not an EPR signal is expected for these complexes depends on the coupling between f and d electrons. Since the coupling in U(II) systems is expected to be sufficiently strong to preclude an EPR signal from compounds with a 5f36d1 configuration, the results are viewed as unexplained phenomena. However, they do show that 5f36d1 U(II) samples can be differentiated from 5f4 U(II) complexes by EPR spectroscopy.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - William N G Moore
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William J Evans
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Jori N, Keener M, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Dinitrogen cleavage by a dinuclear uranium(iii) complex. Chem Sci 2023; 14:13485-13494. [PMID: 38033909 PMCID: PMC10686047 DOI: 10.1039/d3sc05253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Understanding the role of multimetallic cooperativity and of alkali ion-binding in the second coordination sphere is important for the design of complexes that can promote dinitrogen (N2) cleavage and functionalization. Herein, we compare the reaction products and mechanism of N2 reduction of the previously reported K2-bound dinuclear uranium(iii) complex, [K2{[UIII(OSi(OtBu)3)3]2(μ-O)}], B, with those of the analogous dinuclear uranium(iii) complexes, [K(2.2.2-cryptand)][K{UIII(OSi(OtBu)3)3}2(μ-O)], 1, and [K(2.2.2-cryptand)]2[{UIII(OSi(OtBu)3)3}2(μ-O)], 2, where one or two K+ ions have been removed from the second coordination sphere by addition of 2.2.2-cryptand. In this study, we found that the complete removal of the K+ ions from the inner coordination sphere leads to an enhanced reducing ability, as confirmed by cyclic voltammetry studies, of the resulting complex 2, and yields two new species upon N2 addition, namely the U(iii)/U(iv) complex, [K(2.2.2-cryptand)][{UIII(OSi(OtBu)3)3}(μ-O){UIV(OSi(OtBu)3)3}], 3, and the N2 cleavage product, the bis-nitride, terminal-oxo complex, [K(2.2.2-cryptand)]2[{UV(OSi(OtBu)3)3}(μ-N)2{UVI(OSi(OtBu)3)2(κ-O)}], 4. We propose that the formation of these two products involves a tetranuclear uranium-N2 intermediate that can only form in the absence of coordinated alkali ions, resulting in a six-electron transfer and cleavage of N2, demonstrating the possibility of a three-electron transfer from U(iii) to N2. These results give an insight into the relationship between alkali ion binding modes, multimetallic cooperativity and reactivity, and demonstrate how these parameters can be tuned to cleave and functionalize N2.
Collapse
Affiliation(s)
- Nadir Jori
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Megan Keener
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse Cedex 4 France
| | - Rosario Scopelliti
- X-Ray Diffraction and Surface Analytics Platform, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse Cedex 4 France
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Gramüller J, Franta M, Gschwind RM. Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines. J Am Chem Soc 2022; 144:19861-19871. [PMID: 36260790 DOI: 10.1021/jacs.2c07563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
London dispersion (LD) is attracting more and more attention in catalysis since LD is ubiquitously present and cumulative. Since dispersion is hard to grasp, recent research has concentrated mainly on the effect of LD in individual catalytic complexes or on the impact of dispersion energy donors (DEDs) on balance systems. The systematic transfer of LD effects onto confined and more complex systems in catalysis is still in its infancy, and no general approach for using DED residues in catalysis has emerged so far. Thus, on the example of asymmetric Brønsted acid catalyzed transfer hydrogenation of imines, we translated the findings of previously isolated balance systems onto confined catalytic intermediates, resulting in a systematic enhancement of stereoselectivity when employing DED-substituted substrates. As the imine substrate is present as Z- and E-isomers, which can, respectively, be converted to R- and S-product enantiomers, implementing tert-butyl groups as DED residues led to an additional stabilization of the Z-imine by up to 4.5 kJ/mol. NMR studies revealed that this effect is transferred onto catalyst/imine and catalyst/imine/nucleophile intermediates and that the underlying reaction mechanism is not affected. A clear correlation between ee and LD stabilization was demonstrated for 3 substrates and 10 catalysts, allowing to convert moderate-good to good-excellent enantioselectivities. Our findings conceptualize a general approach on how to beneficially employ DED residues in catalysis: they clearly showcase that bulky alkyl residues such as tert-butyl groups must be considered regarding not only their repulsive steric bulk but also their attractive properties even in catalytic complexes.
Collapse
Affiliation(s)
- Johannes Gramüller
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Maximilian Franta
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Carpenter SH, Wolford NJ, Billow BS, Fetrow TV, Cajiao N, Radović A, Janicke MT, Neidig ML, Tondreau AM. Homoleptic Uranium-Bis(acyl)phosphide Complexes. Inorg Chem 2022; 61:12508-12517. [PMID: 35905438 DOI: 10.1021/acs.inorgchem.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.
Collapse
Affiliation(s)
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brennan S Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taylor V Fetrow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathalia Cajiao
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael T Janicke
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aaron M Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
9
|
Gehlhaar A, Schiavo E, Wölper C, Schulte Y, Auer AA, Schulz S. Comparing London Dispersion Pnictogen-π Interactions in Naphthyl-substituted Dipnictanes. Dalton Trans 2022; 51:5016-5023. [DOI: 10.1039/d2dt00477a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a combination of NMR, X-ray diffraction and quantum chemistry, the structure-directing role of London Dispersion (LD) is demonstrated for dibismuthane Bi2Naph2 (1). 1 shows intermolecular Bi···π contacts in the...
Collapse
|
10
|
Atanasov M, Andreici Eftimie EL, Avram NM, Brik MG, Neese F. First-Principles Study of Optical Absorption Energies, Ligand Field and Spin-Hamiltonian Parameters of Cr 3+ Ions in Emeralds. Inorg Chem 2021; 61:178-192. [PMID: 34930002 DOI: 10.1021/acs.inorgchem.1c02650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we study the electronic structure, energies, and vibronic structure of optical d-d transitions of Cr3+ ions doped in beryl (Be3Si6Al2O18:Cr3+, emerald). A computational protocol is developed that combines periodic density functional theory (for modeling of the bulk crystalline lattice of emerald) and the multireference configuration interaction complete active space self-consistent field method supplemented with n-electron valence second-order perturbation theory (for the calculation of the energy levels, wave functions, and spin-Hamiltonian and ligand-field parameters of the trigonal Cr3+ centers in the [CrO6]9- clusters embedded in an extended point charge field). Ligand-field parameters were extracted from mapping the effective ligand-field Hamiltonian onto the full many-particle Hamiltonian from one side and from a direct fit to energies of computed d-d transitions on the other side. These have been analyzed using ab initio ligand-field theory. The quality of the theoretical predictions is critically assessed through a detailed comparison with the available experimental data.
Collapse
Affiliation(s)
- Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Nicolae M Avram
- Department of Physics, West University of Timisoara, Bd.V. Parvan No. 4, Timisoara 300223, Romania.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Mikhail G Brik
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,CQUPT-BUL Innovation Institute & College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China.,Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, Częstochowa PL-42200, Poland.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
11
|
Gehlhaar A, Wölper C, Vight F, Jansen G, Schulz S. Noncovalent Intra‐ and Intermolecular Interactions in Peri‐Substituted Pnicta Naphthalene and Acenaphthalene Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander Gehlhaar
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Felix Vight
- Theoretical Organic Chemistry University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Georg Jansen
- Theoretical Organic Chemistry University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| |
Collapse
|
12
|
Xin T, Wang X, Yang K, Liang J, Huang W. Rare Earth Metal Complexes Supported by a Tripodal Tris(amido) Ligand System Featuring an Arene Anchor. Inorg Chem 2021; 60:15321-15329. [PMID: 34569797 DOI: 10.1021/acs.inorgchem.1c01922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new tripodal tris(amido) ligand system featuring an arene anchor was developed and applied to the coordination chemistry of rare earth metals. Two tris(amido) ligands with a 1,3,5-triphenylbenzene backbone were prepared in two steps from commercially available reagents on a gram scale. Salt metathesis and alkane elimination reactions were exploited to prepare mononuclear rare earth metal complexes in moderate to good yields. For salt metathesis reactions, while metal tribromides yielded neutral metal tris(amido) complexes, metal trichlorides led to the formation of ate complexes with an additional chloride bound to the metal center. The new compounds were characterized by X-ray crystallography, elemental analysis, and 1H and 13C nuclear magnetic resonance spectroscopy. The rare earth metal complexes exhibit a trigonal planar coordination geometry for the [MN3] fragment in the solid state rather than a trigonal pyramidal geometry, commonly observed for rare earth metal tris(amido) complexes such as M[N(SiMe3)2]3. Moreover, the arene anchor of the tripodal ligands is engaged in a nonnegligible interaction with the rare earth metal ions. Density functional theory calculations were performed to gain insight into the bonding interactions between the tripodal ligands and the rare earth metal ions. While LUMOs of these rare earth metal complexes are mainly π* orbitals of the arene with a minor component of metal-based orbitals, HOMO-15 and HOMO-16 of a lanthanum complex show that the arene anchor serves as a π donor to the trivalent lanthanum ion.
Collapse
Affiliation(s)
- Tiansi Xin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinrui Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Kexin Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
13
|
Bukvic A, Burnage AL, Tizzard GJ, Martínez-Martínez AJ, McKay AI, Rees NH, Tegner BE, Krämer T, Fish H, Warren MR, Coles SJ, Macgregor SA, Weller AS. A Series of Crystallographically Characterized Linear and Branched σ-Alkane Complexes of Rhodium: From Propane to 3-Methylpentane. J Am Chem Soc 2021; 143:5106-5120. [PMID: 33769815 PMCID: PMC8154534 DOI: 10.1021/jacs.1c00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(Cy2PCH2CH2PCy2)(ηn:ηm-alkane)][BArF4] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; ArF = 3,5-(CF3)2C6H3). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H-C binding motifs at the metal coordination site: 1,2-η2:η2 (2-methylbutane), 1,3-η2:η2 (propane), 2,4-η2:η2 (hexane), and 1,4-η1:η2 (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H-C interactions with the geminal C-H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(Cy2PCH2CH2PCy2)}+ fragment and the surrounding array of [BArF4]- anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes.
Collapse
Affiliation(s)
- Alexander
J. Bukvic
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Arron L. Burnage
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, University
of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | | | - Alasdair I. McKay
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Nicholas H. Rees
- Department
of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K.
| | - Bengt E. Tegner
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Tobias Krämer
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Heather Fish
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Mark R. Warren
- Diamond
Light Source Ltd., Diamond House,
Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, University
of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS. U.K.
| | - Andrew S. Weller
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| |
Collapse
|
14
|
Wolford NJ, Yu X, Bart SC, Autschbach J, Neidig ML. Ligand effects on electronic structure and bonding in U(iii) coordination complexes: a combined MCD, EPR and computational study. Dalton Trans 2020; 49:14401-14410. [DOI: 10.1039/d0dt02929g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopy and theory enable broader insight into electronic structure and bonding in U(iii) coordination complexes, focusing on systems with Tp* ligands.
Collapse
Affiliation(s)
| | - Xiaojuan Yu
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Suzanne C. Bart
- H.C. Brown Laboratory
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | | |
Collapse
|
15
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|