1
|
Konrad Y, Jayaraman A, Krummenacher I, Braunschweig H. Formation and Metallomimetic Reactivity of a Transient Dicoordinate Alkylborylene. Angew Chem Int Ed Engl 2025; 64:e202423669. [PMID: 40066738 DOI: 10.1002/anie.202423669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
While existing literature has primarily focused on carbene-stabilized amino- and arylborylenes of the form [(carbene)BR] (R = substituent), herein we report the generation and metallomimetic reactivity of the first carbene-stabilized alkylborylene [(CAACMe)BCy] (CAACMe = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene, Cy = cyclohexyl). Furthermore, the transition metal-like decarbonylation reactions of a borylene complex, [(CAACMe)BCy(CO)], derived from borylene [(CAACMe)BCy] and CO, are described. Additional findings described include i) the identification of the coordination stages of the ligand to boron towards forming complexes [(CAACMe)BCyL] in the reduction route from starting material [(CAACMe)BCyBr2] and in the photolysis route from carbonyl complex [(CAACMe)BCy(CO], and ii) insights from quantum-chemical computations regarding the molecular and electronic structure of the borylene at various stages.
Collapse
Affiliation(s)
- Yannick Konrad
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Arumugam Jayaraman
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, 89154, USA
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Germany
| |
Collapse
|
2
|
Jin C, Li CC, Xiao K, Wang W, Dai S, Deng Q, Zhou K, Xia Y, Zhu J, Zhao L. Solvent-Driven Interconversion of Pyridine Dicarbanion-Bonded Ag 13 Nanocluster Isomers. Angew Chem Int Ed Engl 2025:e202506860. [PMID: 40263965 DOI: 10.1002/anie.202506860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/24/2025]
Abstract
Solvent screening is pivotal for optimizing metal-catalyzed reactions, yet its impact on the in situ formation and reactivity of polynuclear organometallic clusters remains underexplored. We herein isolate two distinct thirteen-membered silver cluster isomers, Ag13-A and Ag13-M, in acetone and methanol, respectively. Significantly, we demonstrate the interconversion of these isomers facilitated by solvent manipulation. Mechanistic studies on the solvent-driven Ag13-A to Ag13-M transformation reveal this transformation proceeds with a low activation energy (23.39 ± 0.81 kcal mol-1) and positive entropy, involving counter anion dissociation, ligand twisting, and re-coordination. The observed differences in thermal stability and reactivity between two isomers are attributed to variations in Ag-Ag interactions and surface ligand arrangements, underscoring the critical role of solvent selection in affecting the whole organic transformation through in situ formed clusters. These results highlight the necessity of considering organometallic cluster intermediates in solvent screening.
Collapse
Affiliation(s)
- Cong Jin
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cui-Cui Li
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Yanshan Branch, Beijing, 102500, China
| | - Kui Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Songshan Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianqian Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Keting Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xia
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Jayaraman A, Ritschel B, Arrowsmith M, Markl C, Jürgensen M, Halkić A, Konrad Y, Stoy A, Radacki K, Braunschweig H. Experimental Observation of a Terminal Borylene-Dinitrogen Adduct via Cleavage of a 1,2,3,4,5-Diboratriazoline. Angew Chem Int Ed Engl 2024; 63:e202412307. [PMID: 39183710 DOI: 10.1002/anie.202412307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
While azides do not react with simple alkenes except under harsh conditions, a diboron alkene analogue, the doubly cyclic alkyl(amino)carbene (CAAC)-stabilized dicyanodiborene 1, reacts spontaneously with organic azides (7-10 equiv.) at room temperature to yield two equivalents of stable CAAC-imino(cyano)boranes (2-R). NMR-spectroscopic monitoring of the reaction mixtures shows the initial formation of a 1 : 1 mixture of 2-R and a relatively long-lived intermediate (Int), which in the presence of excess azide is converted into a second equivalent of 2-R. In the absence of excess azide, however, Int decomposes to 3, the product of an intramolecular C-H activation by a putative dicoordinate borylene intermediate "(CAAC)B(CN)". Mechanistic insights from trapping experiments, NMR-spectroscopic and high-resolution mass spectrometry data, as well as DFT computations reveal that Int is the terminal borylene end-on-dinitrogen adduct [(CAAC)B(CN)(η1-N2)]. The formation of the iminoboranes 2-R from diborene 1 and RN3 proceeds via an azide-diborene Huisgen-type [3+2] cycloaddition reaction, followed by a retro-[3+2] cycloaddition, yielding 2-R and [(CAAC)B(CN)(η1-N2)]. The latter then undergoes either N2 extrusion and intramolecular C-H activation to generate 3, or a Staudinger-type reaction with a second equivalent of azide to generate a second equivalent of the iminoborane 2-R.
Collapse
Affiliation(s)
- Arumugam Jayaraman
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 89154, Las Vegas, United States
| | - Benedikt Ritschel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christian Markl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Malte Jürgensen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anel Halkić
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Yannick Konrad
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Stoy
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Intelli AJ, Wayment CZ, Lee RT, Yuan K, Altman RA. Palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes - use of a nitrite additive to suppress β-F elimination. Chem Sci 2024:d4sc04939j. [PMID: 39386912 PMCID: PMC11456958 DOI: 10.1039/d4sc04939j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The installation of fluorine and fluorinated functional groups in organic molecules perturbs the physicochemical properties of those molecules and enables the development of new therapeutics, agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access some fluorinated functional groups and fluorinated scaffolds. One such group, the gem-difluorobenzyl motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic gem-difluoroalkene. Previous attempts have relied on forming unstable anionic or organometallic intermediates that rapidly decompose through a β-F elimination process to deliver monofluorovinyl products. In contrast, we report a fluorine-retentive palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes that takes advantage of a nitrite (NO2 -) additive to avoid the favorable β-F elimination pathway that forms monofluorinated products, instead delivering difluorinated products.
Collapse
Affiliation(s)
- Andrew J Intelli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Coriantumr Z Wayment
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Ryan T Lee
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target Clinical Pharmacology, Guangzhou Medical University Guangzhou 511436 China
| | - Ryan A Altman
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
5
|
Dotzauer S, Jayaraman A, Reinhart D, Braunschweig H. Intermolecular 1,2-Aminoboration of Alkynes and the Critical Role of Electron-Rich Alkynes. Angew Chem Int Ed Engl 2024:e202413370. [PMID: 39312442 DOI: 10.1002/anie.202413370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
The intramolecular 1,2-aminoboration of alkynes by aminoboranes is rare and invariably requires a catalyst to proceed, while the intermolecular aminoboration of alkynes is yet entirely unknown. Through an exploration of the significance of electronics in alkynes for activating the B-N σ-bond of aminoboranes, we demonstrate in this work the first intermolecular 1,2-aminoboration of alkynes. These reactions employ a series of (amino)dihaloboranes and aminoboronic esters, mild reaction conditions, and no catalysts, yielding syn-addition alkene products with the incorporation of two crucial functionalities: amino and boryl. While highly electron-rich examples can afford the aminoborated products (Z)-2-borylethenamines, other alkynes, including unactivated and less electron-rich examples, do not lead to the corresponding aminoborated products due to the fundamental impediment that the reactions are significantly endergonic.
Collapse
Affiliation(s)
- Simon Dotzauer
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Arumugam Jayaraman
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 89154, Las Vegas, United States
| | - David Reinhart
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Aseman MD, Kiyavash S. High Selectivity in Csp 2-Csp 2 versus Csp 3-O Reductive Elimination from Cycloplatinated(IV) Complexes. Inorg Chem 2024; 63:12475-12484. [PMID: 38907728 DOI: 10.1021/acs.inorgchem.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The cycloplatinated(IV) complexes trans-[Pt(p-MeC6H4)(C∧N)(OAc)2(H2O)] (C∧N = benzo[h]quinolate, bhq, 2a, and 2-phenylpyridinate, ppy, 2b) were prepared by reacting the corresponding [Pt(p-MeC6H4)(C∧N)(SMe2)] precursors with PhI(OAc)2 through an oxidative addition (OA) reaction. Thermolysis of 2a at 65 °C generates cis-[Pt(κ1N-10-(p-MeC6H4)-bhq)(OAc)2(H2O)], 3a, which is the product of a Csp2Ar-Csp2bhq reductive elimination (RE). The observed coupling reaction is significantly different from the previously reported analogous thermolysis of trans-[PtMe(C∧N)(OAc)2(H2O)] (C∧N = bhq, 2c, and ppy, 2d) that selectively releases Me-OAc (C-O RE). The density functional theory (DFT) calculations and experimental observations reveal that the Csp2Ar-Csp2bhq coupling reaction occurs through the dissociation of a coordinated water ligand. This in turn is followed by the concomitant bond forming and bond breaking process via a three-center ring transition state, in contrast to the Csp3Me-OAc coupling, which had taken place by an outer sphere SN2 type RE reaction in methyl complexes.
Collapse
Affiliation(s)
- Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, Tehran 14115-175, Iran
| | - Susan Kiyavash
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, Tehran 14115-175, Iran
| |
Collapse
|
7
|
Iida T, Sato R, Yoshigoe Y, Kanbara T, Kuwabara J. Mechanistic study on the reductive elimination of (aryl)(fluoroaryl)palladium complexes: a key step in regiospecific dehydrogenative cross-coupling. Dalton Trans 2024. [PMID: 38958099 DOI: 10.1039/d4dt01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Cross-dehydrogenative coupling (CDC) reactions have attracted attention as short-step synthetic methods for C-C bond formation. Recently, we have developed CDC reactions between naphthalene and fluorobenzene. Rather than exhibiting general regioselectivity, this reaction proceeds selectively at the β-position of naphthalene. In this study, investigation using model complexes as reaction intermediates revealed that the origin of the unique selectivity is the exclusive occurrence of reductive elimination at the β-position. Detailed studies on the reductive elimination showed that the steric hindrance of the naphthyl group and the electron-withdrawing properties of fluorobenzene determine the position at which the reductive elimination reaction proceeds. These results show that the selectivity of the C-H functionalisation of polycyclic aromatic hydrocarbons (PAHs) is determined not by the C-H cleavage step, but by the subsequent reductive elimination step. The regioselective CDC reaction was adaptable to various PAHs but was less selective for pyrene with extended π-conjugation. In fluorobenzene substrates, the F atoms at the two ortho positions of the C-H moiety are necessary for high selectivity. The substrate ranges are in good agreement with the proposed mechanism, in which the reductive elimination step determines the regioselectivity.
Collapse
Affiliation(s)
- Tomoki Iida
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Ryota Sato
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yusuke Yoshigoe
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Takaki Kanbara
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Junpei Kuwabara
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
- Tsukuba Research Center for Energy Materials Science (TREMS), Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
8
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
9
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Polyansky DE, Manbeck GF, Ertem MZ. Combined Effects of Hemicolligation and Ion Pairing on Reduction Potentials of Biphenyl Radical Cations. J Phys Chem A 2023; 127:7918-7927. [PMID: 37721794 DOI: 10.1021/acs.jpca.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Formal reduction potentials of highly oxidizing and short-lived radical cations of substituted biphenyls generated by pulse radiolysis in 1,2-dichloroethane (DCE) were measured using a redox equilibrium ladder method. The effect of halide ion-radical interactions on reduction potentials of biphenyls was examined by utilizing the ability of DCE to release Cl- in the vicinity of the radical cation. The Hammett correlation of measured potentials across a range of over 700 mV shows saturation at high Hammett sigma values. This effect has been explained by both ion-pairing and hemicolligation interactions between biphenyl radical cations and Cl- and appears to modulate reduction potentials by as much as 400 mV. This finding offers a convenient way to manipulate the energetics of electron transfer involving organic redox species.
Collapse
Affiliation(s)
- Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
11
|
Roscales S, Sánchez-Sancho F, Csáky AG. (Ph3P)AuCl-catalyzed homocoupling of arylboronic acids under benchtop conditions: Synthesis of biphenyls. MOLECULAR CATALYSIS 2023; 547:113281. [DOI: 10.1016/j.mcat.2023.113281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hatano A, Sugawa T, Mimura R, Kataoka S, Yamamoto K, Omoda T, Zhu B, Tian Y, Sakaki S, Murahashi T. Isolation and Structures of Polyarene Palladium Nanoclusters. J Am Chem Soc 2023. [PMID: 37276484 PMCID: PMC10360153 DOI: 10.1021/jacs.3c02849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report that surrounding coordination of neutral six-membered arene rings affords molecularly well-defined organotransition metal nanoclusters. With the use of [2.2]paracyclophane as the face-capping arene ligand, we have isolated two polyarene palladium nanoclusters, one consisting of a hexakis-arene ligand shell and a hexagonal close-packed Pd13 anticuboctahedron trichloride core, and the other consisting of an octakis-arene ligand shell and a non-close-packed Pd17 square gyrobicupola dichloride core, both with Pd-Pd direct bonding. The μ4-facial coordination mode of arene was discovered through the structural characterization of the Pd13 cluster. Their Pd13 and Pd17 cores, which are distinct from the previously identified face-centered-cubic Pd13 core surrounded by seven-membered cycloheptatrienyl, are explained by stereochemical and theoretical analyses.
Collapse
Affiliation(s)
- Ayaka Hatano
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Sugawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Rei Mimura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shunichi Kataoka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koji Yamamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsubasa Omoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Bo Zhu
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Yu Tian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8302, Japan
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
13
|
Anderson ID, Wang Y, Aikens CM, Ackerson CJ. An ultrastable thiolate/diglyme ligated cluster: Au 20(PET) 15(DG) 2. NANOSCALE 2022; 14:9134-9141. [PMID: 35723454 DOI: 10.1039/d2nr02426h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The synthesis and characterization of an Au20(PET)15(DG)2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au20(PET)16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol-1 for diglyme, which is comparable to the value of ∼40 kcal mol-1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au20(PET)15(DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.
Collapse
Affiliation(s)
- Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
14
|
Park H, Lee J, Hwang SH, Kim D, Hong SH, Choi TL. Modulating the Rate of Controlled Suzuki–Miyaura Catalyst-Transfer Polymerization by Boronate Tuning. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyunwoo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Daeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. J Org Chem 2022; 87:4863-4872. [PMID: 35316603 PMCID: PMC8981317 DOI: 10.1021/acs.joc.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 01/02/2023]
Abstract
The preparation of symmetrical (hetero)biaryls via arylazo sulfones has been successfully carried out upon visible light irradiation in the presence of PPh3AuCl as the catalyst. The present protocol led to the efficient synthesis of a wide range of target compounds in an organic-aqueous solvent under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simone Scaringi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department
of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Carlotta Raviola
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
16
|
Ponce-de-León J, Marcos-Ayuso G, Casares JA, Espinet P. Pd/Cu bimetallic catalysis to access highly fluorinated biaryls from aryl halides and fluorinated arenes. Chem Commun (Camb) 2022; 58:3146-3149. [PMID: 35174831 DOI: 10.1039/d2cc00141a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Pd/Cu bimetallic cross-coupling catalysis of fluoroaryl halides and fluoroarenes is reported. In situ generation of the Cu nucleophile by rate determining C-H activation of highly fluorinated aryls (≥4 F atoms) leads to high cross-coupling selectivity with little formation of homocoupling products.
Collapse
Affiliation(s)
- Jaime Ponce-de-León
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Guillermo Marcos-Ayuso
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Juan A Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid-47071, Spain.
| |
Collapse
|
17
|
Iida K, Muto T, Kobayashi M, Iitsuka H, Li K, Yonezawa N, Okamoto A. Distinguishment of Weak Interactions of Hydrogen Atoms Bound to Carbon Atoms: X-Ray Crystal Structural and Hirshfeld Surface Analyses of 2-Hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene with the 2-Methoxylated Homologue. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211231105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
X-ray crystal and Hirshfeld surface analyses of 2-hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene and its 2-methoxylated homologue show quantitatively and visually distinct molecular contacts in crystals and minute differences in the weak intermolecular interactions. The title compound has a helical tubular packing, where molecules are piled in a two-folded head-to-tail fashion. The homologue has a tight zigzag molecular string lined up behind each other via nonclassical intermolecular hydrogen bonds between the carbonyl oxygen atom and the hydrogen atom of the naphthalene ring. The dnorm index obtained from the Hirshfeld surface analysis quantitatively demonstrates stronger molecular contacts in the homologue, an ethereal compound, than in the title compound, an alcohol, which is consistent with the higher melting temperature of the former than the latter. Stabilization through the significantly weak intermolecular nonclassical hydrogen bonding interactions in the homologue surpasses the stability imparted by the intramolecular C=O…H–O classical hydrogen bonds in the title compound. The classical hydrogen bond places the six-membered ring in the concave of the title molecule. The hydroxy group opposingly disturbs the molecular aggregation of the title compound, as demonstrated by the distorted H…H interactions covering the molecular surface, owing to the rigid molecular conformation. The position of effective interactions predominate over the strength of the classical/nonclassical hydrogen bonds in the two compounds.
Collapse
Affiliation(s)
- Kikuko Iida
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Toyokazu Muto
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Miyuki Kobayashi
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Hiroaki Iitsuka
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Kun Li
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Yonezawa
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan; Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Akiko Okamoto
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
19
|
Ponce-de-León J, Espinet P. Selective synthesis of fluorinated biaryls by [MCl 2(PhPEWO-F)] (M = Ni, Pd) catalysed Negishi cross-coupling. Chem Commun (Camb) 2021; 57:10875-10878. [PMID: 34590665 DOI: 10.1039/d1cc04915a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly selective cross-couplings to polyfluorinated assymmetric biaryls, including the symmetric biaryl C6F5-C6F5, are achieved at relatively low temperature (80 °C) and in short times using [MCl2(PhPEWO-F)] catalysts (M = Ni, Pd; PhPEWO-F = 1-(PPh2), 2-(CHCH-C(O)Ph)-C6F4), ArFI, and Zn(C6F5)2 as example of highly fluorinated nucleophile.
Collapse
Affiliation(s)
- Jaime Ponce-de-León
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain.
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain.
| |
Collapse
|
20
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst‐Free, Base‐Promoted 1,2‐Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Tamil Nadu 603203 India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials College of Chemistry Chongqing Normal University Chongqing 401331 China
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4L 1G8 Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
21
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst-Free, Base-Promoted 1,2-Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021; 60:16529-16538. [PMID: 33901332 PMCID: PMC8362073 DOI: 10.1002/anie.202103686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K+ in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and TechnologySRM NagarKattankulathurTamil Nadu603203India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNBE4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
22
|
Yoshigoe Y, Suzaki Y, Osakada K. Cyclic Diplatinum Complex with a Tröger's Base Ligand and Reductive Elimination of a Highly Strained Ring Molecule. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Yoshigoe
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuji Suzaki
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kohtaro Osakada
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
23
|
Gioria E, del Pozo J, Lledós A, Espinet P. Understanding the Use of Phosphine-(EWO) Ligands in Negishi Cross-Coupling: Experimental and Density Functional Theory Mechanistic Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Estefanía Gioria
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Juan del Pozo
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
24
|
Dawoud Bani-Yaseen A, Sarayrah R, Nabilla F. The effects of substituents on the reductive elimination of difluoromethylated hydrazones from small bite-angle PdII molecular catalyst: A DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Budiman YP, Lorenzen S, Liu Z, Radius U, Marder TB. Base-Free Pd-Catalyzed C-Cl Borylation of Fluorinated Aryl Chlorides. Chemistry 2021; 27:3869-3874. [PMID: 33197081 PMCID: PMC7986610 DOI: 10.1002/chem.202004648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Indexed: 01/21/2023]
Abstract
Catalytic C-X borylation of aryl halides containing two ortho-fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho-fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents. This method, conducted under base-free conditions, is compatible with the resulting di-ortho-fluorinated aryl boronate products which are sensitive to base.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Sabine Lorenzen
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Zhiqiang Liu
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
26
|
Föhrenbacher SA, Krahfuss MJ, Zapf L, Friedrich A, Ignat'ev NV, Finze M, Radius U. Tris(pentafluoroethyl)difluorophosphorane: A Versatile Fluoride Acceptor for Transition Metal Chemistry. Chemistry 2021; 27:3504-3516. [PMID: 33241855 PMCID: PMC7898530 DOI: 10.1002/chem.202004885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Fluoride abstraction from different types of transition metal fluoride complexes [Ln MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C2 F5 )3 PF2 to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2 F5 )3 PF3 ]- ) is reported. (C2 F5 )3 PF2 reacted with trans-[Ni(iPr2 Im)2 (ArF )F] (iPr2 Im=1,3-diisopropylimidazolin-2-ylidene; ArF =C6 F5 , 1 a; 4-CF3 -C6 F4 , 1 b; 4-C6 F5 -C6 F4 , 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr2 Im)2 (solv)(ArF )]FAP (2 a-c[solv]; solv=Et2 O, CH2 Cl2 , THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh3 , solvent coordination was suppressed and the complexes trans-[Ni(iPr2 Im)2 (PPh3 )(C6 F5 )]FAP (trans-2 a[PPh3 ]) and cis-[Ni(iPr2 Im)2 (Dipp2 Im)(C6 F5 )]FAP (cis-2 a[Dipp2 Im]) (Dipp2 Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp2 Im)CuF] (3) in CH2 Cl2 or 1,2-difluorobenzene led to the isolation of [{(Dipp2 Im)Cu}2 ]2+ 2 FAP- (4). Subsequent reaction of 4 with PPh3 and different carbenes resulted in the complexes [(Dipp2 Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6 Me6 , fluoride transfer afforded [(Dipp2 Im)Cu(C6 Me6 )]FAP (5 f), which serves as a source of [(Dipp2 Im)Cu)]+ . Fluoride abstraction of [Cp2 TiF2 ] (7) resulted in the formation of dinuclear [FCp2 Ti(μ-F)TiCp2 F]FAP (8) (Cp=η5 -C5 H5 ) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.
Collapse
Affiliation(s)
- Steffen A. Föhrenbacher
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mirjam J. Krahfuss
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ludwig Zapf
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- ConsultantMerck KGaAFrankfurter Strasse 25064293DarmstadtGermany
| | - Maik Finze
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
27
|
Kakkar A. Celebrating Todd Marder: 65th Birthday and His Contributions to Inorganic Chemistry. Molecules 2021; 26:776. [PMID: 33546127 PMCID: PMC7913161 DOI: 10.3390/molecules26040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Professor Todd B [...].
Collapse
Affiliation(s)
- Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
28
|
Budiman YP, Westcott SA, Radius U, Marder TB. Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yudha P. Budiman
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4 L 1G8 Canada
| | - Udo Radius
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute for Inorganic Chemistry Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians University Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
29
|
Ertler D, Kuntze-Fechner MW, Dürr S, Lubitz K, Radius U. C–F bond activation of perfluorinated arenes using NHC-stabilized cobalt half-sandwich complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj06137a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A study on the reactivity of cobalt half-sandwich complexes [Cp(*)Co(NHC)(olefin)] with perfluoroarenes demonstrates that C–F activation occurs along a one-electron oxidative addition pathway.
Collapse
Affiliation(s)
- Daniel Ertler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Maximilian W. Kuntze-Fechner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Simon Dürr
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Katharina Lubitz
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
30
|
Ponce-de-León J, Gioria E, Martínez-Ilarduya JM, Espinet P. Ranking Ligands by Their Ability to Ease (C 6F 5) 2Ni IIL → Ni 0L + (C 6F 5) 2 Coupling versus Hydrolysis: Outstanding Activity of PEWO Ligands. Inorg Chem 2020; 59:18287-18294. [PMID: 33289542 DOI: 10.1021/acs.inorgchem.0c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NiII literature complex cis-[Ni(C6F5)2(THF)2] is a synthon of cis-Ni(C6F5)2 that allows us to establish a protocol to measure and compare the ligand effect on the NiII → Ni0 reductive elimination step (coupling), often critical in catalytic processes. Several ligands of different types were submitted to this Ni-meter comparison: bipyridines, chelating diphosphines, monodentate phosphines, PR2(biaryl) phosphines, and PEWO ligands (phosphines with one potentially chelate electron-withdrawing olefin). Extremely different C6F5-C6F5 coupling rates, ranging from totally inactive (producing stable complexes at room temperature) to those inducing almost instantaneous coupling at 25 °C, were found for the different ligands tested. The PR2(biaryl) ligands, very efficient for coupling in Pd, are slow and inefficient in Ni, and the reason for this difference is examined. In contrast, PEWO type ligands are amazingly efficient and provide the lowest coupling barriers ever observed for NiII complexes; they yield up to 96% C6F5-C6F5 coupling in 5 min at 25 °C (the rest is C6F5H) and 100% coupling with no hydrolysis in 8 h at -22 to -53 °C.
Collapse
Affiliation(s)
- Jaime Ponce-de-León
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Estefania Gioria
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Jesús M Martínez-Ilarduya
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
31
|
Liu Z, Budiman YP, Tian Y, Friedrich A, Huang M, Westcott SA, Radius U, Marder TB. Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes. Chemistry 2020; 26:17267-17274. [PMID: 32697365 PMCID: PMC7821263 DOI: 10.1002/chem.202002888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 01/13/2023]
Abstract
We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mingming Huang
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
32
|
Jiao ZF, Tian YM, Zhang B, Hao CH, Qiao Y, Wang YX, Qin Y, Radius U, Braunschweig H, Marder TB, Guo XN, Guo XY. High photocatalytic activity of a NiO nanodot-decorated Pd/SiC catalyst for the Suzuki-Miyaura cross-coupling of aryl bromides and chlorides in air under visible light. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|