1
|
Lin J, Li H, Bao X. Mechanistic insights into photocatalytic nitrene transfer reactions of benzoyl azide in the presence of phosphoric acid. Org Biomol Chem 2025. [PMID: 40358103 DOI: 10.1039/d5ob00538h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Computational studies were carried out to shed light on the mechanism of photocatalytic nitrene transfer reactions of benzoyl azide in the presence of phosphoric acid. The formed H-bonding complex of benzoyl azide with H3PO4 would readily undergo single electron reduction with the excited *Ru(II) photocatalyst, followed by sequential proton transfer and N2 dissociation to give a key N-centered radical. The energy transfer mechanistic pathway leading to a protonated nitrenium species, however, might not be feasible. The formed N-radical underwent different types of reactions with N-methylpyrrole and alkene, respectively, which was also rationalized.
Collapse
Affiliation(s)
- Jiaxin Lin
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Hongmin Li
- Soochow College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Chen L, Li C, Wang H, Li J, Song S. HFIP-Promoted Aromatic Electrophilic Amidation of Indoles and Pyrroles with Isocyanates. J Org Chem 2025; 90:4271-4276. [PMID: 40106811 DOI: 10.1021/acs.joc.4c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A mild and practical method for synthesizing amidoindoles and amidopyrroles was described via the direct amidation of indoles or pyrroles with isocyanates promoted by 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). In this reaction, HFIP acted as a strong hydrogen bond-donating solvent to activate isocyanates, enabling the amidation of electron-rich nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| | - Chao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| | - Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| | - Jiaxing Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| |
Collapse
|
3
|
Qian MY, Wang YQ, Zhou QL, Xiao LJ. Nickel-Catalyzed Hydrocarbamoylation of Alkenes with Isocyanates. Org Lett 2025; 27:2975-2980. [PMID: 40091611 DOI: 10.1021/acs.orglett.5c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The hydrocarbamoylation of alkenes with isocyanates is a promising method for synthesizing amides. However, applying this strategy to more inert, simple alkenes, such as styrenes, α-olefins, and internal alkenes, poses significant challenges. Here, we report the first nickel-catalyzed hydrocarbamoylation of alkenes with isocyanates, facilitated by triethoxysilane to reduce nickelacycle intermediates. By switching ligands─including 6,6'-dimethyl-2,2'-bipyridine and N-heterocyclic carbene─this method efficiently produces amides from a diverse array of alkenes, including styrenes, α-olefins, internal alkenes, and gaseous olefins.
Collapse
Affiliation(s)
- Meng-Ying Qian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yu-Qing Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Gao C, Tang K, Yang X, Gao S, Zheng Q, Chen X, Liu J. Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters. J Am Chem Soc 2025; 147:3360-3370. [PMID: 39818822 DOI: 10.1021/jacs.4c14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of tetra-substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities. Detailed mechanistic experiments and kinetic studies were conducted to elucidate the reaction pathway and the rate-determining step of the reaction. DFT calculations revealed that the π···π stacking interaction between the phenyl groups on the substrate and the phosphorus ligand, along with the smaller distortion in the CuL-Bpin part, contributed to the high diastereo- and enantioselectivities. The synthetic utility of the protocol was showcased by the facile synthesis of some valuable chiral cyclopropanes with multiple chiral centers.
Collapse
Affiliation(s)
- Chao Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Kai Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xi Yang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xiangyang Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
5
|
Yeo J, Tassone JP, Ellman JA. Synthesis of α-Quaternary Amides via Cp*Co(III)-Catalyzed Sequential C-H Bond Addition to 1,3-Dienes and Isocyanates. Org Lett 2024; 26:9769-9774. [PMID: 39481088 PMCID: PMC11578270 DOI: 10.1021/acs.orglett.4c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The synthesis of sterically congested amides was accomplished via Cp*Co(III)-catalyzed sequential C-H bond addition to 1,3-dienes followed by aminocarbonylation with isocyanates, a coupling partner that had never been utilized in sequential C-H bond addition reactions. A variety of C-H bond reactants, internally substituted dienes, and aromatic isocyanates provided secondary amide products incorporating α-all-carbon quaternary centers. The conversion of the amide products to other useful compound classes was also demonstrated.
Collapse
Affiliation(s)
- Jihyeon Yeo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph P Tassone
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Seo CB, Yoon WS, Yun J. Asymmetric Conjugate Addition of Vinyl Arene-Derived Chiral Benzylcopper Nucleophiles. Org Lett 2024; 26:8340-8344. [PMID: 39303154 DOI: 10.1021/acs.orglett.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We report the copper-catalyzed asymmetric conjugate addition of vinyl arene-derived nucleophiles to α,β-unsaturated diesters. Due to the high electrophilicity of α,β-unsaturated diesters toward nucleophilic copper catalysts, inclusion of vinyl arenes as pronucleophiles is challenging due to chemoselectivity issues in a multicomponent reaction compared with those of other successful examples of dienes, allenes, and enynes. In this method, chemoselective in situ generation of a chiral benzylic copper intermediate and its stereoselective addition to α,β-unsaturated diesters provided organoboron adducts with contiguous stereogenic centers with good levels of diastereoselectivity and enantioselectivity (≤85:15 diastereomeric ratio and 99% enantiomeric excess, respectively).
Collapse
Affiliation(s)
- Cham Bi Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Wan Seok Yoon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
7
|
Qin GQ, Wang J, Cao XR, Chu XQ, Zhou X, Rao W, Zhai LX, Miao C, Shen ZL. Nickel-Catalyzed Reductive Amidation of Aryl Fluorosulfates with Isocyanates: Synthesis of Amides via C-O Bond Cleavage. J Org Chem 2024; 89:13735-13743. [PMID: 39213645 DOI: 10.1021/acs.joc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
Collapse
Affiliation(s)
- Gan-Qi Qin
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiao Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Rong Cao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Xin Zhai
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Geng HQ, Zhao YH, Yang P, Wu XF. Copper-catalyzed carbonylative multi-component borylamidation of alkenes for synthesizing γ-boryl amides with CO as both methylene and carbonyl sources. Chem Sci 2024; 15:3996-4004. [PMID: 38487224 PMCID: PMC10935720 DOI: 10.1039/d4sc00156g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
A multi-component carbonylation reaction is an efficient strategy for the synthesis of valuable carbonyl compounds from simple and readily available substrates. However, there remain challenges in carbonylation reactions where two CO molecules are converted to different groups in the target product. Considering the merit of complex amides, we reported here a copper-catalyzed multi-component borylamidation for the synthesis of γ-boryl amides. This method provides access to a wide range of functional γ-boryl amides from alkenes, amines, B2pin2, and CO with good yields and excellent diastereomeric ratios. Notably, two CO molecules were converted to methylene and carbonyl groups in the target amides. A series of amines were successfully involved in the transformation, including arylamines, aliphatic amines, and hydrochloride salts of secondary aliphatic amines.
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yan-Hua Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Peng Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
9
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
10
|
Liu S, Liu Y, Flaget A, Zhang C, Mazet C. Cu-Catalyzed Enantioselective Protoboration of 2,3-Disubstituted 1,3-Dienes. Org Lett 2023; 25:6897-6901. [PMID: 37695719 PMCID: PMC10521025 DOI: 10.1021/acs.orglett.3c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 09/13/2023]
Abstract
A Cu-catalyzed regio- and enantioselective protoboration of 2,3-disubstituted 1,3-dienes is described. The protocol operates under mild conditions and is applicable to symmetrically and unsymmetrically substituted dienes, providing access to homoallylic boronates in consistently high yield, regioselectivity, and enantiomeric ratio. Preliminary investigations point to a complex mechanism.
Collapse
Affiliation(s)
- Sensheng Liu
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | | | - Arthur Flaget
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Cheng Zhang
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Chaudhari TY, Bisht S, Chorol S, Bhujbal SM, Bharatam PV, Tandon V. Bronsted Acid-Catalyzed Regioselective Carboxamidation of 2-Indolylmethanols with Isonitriles. J Org Chem 2023. [PMID: 37440673 DOI: 10.1021/acs.joc.2c02816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A regioselective direct carboxamidation reaction of 2-indolylmethanols with readily available isocyanoesters/isocyanides has been reported in this work. The reaction was catalyzed by Bronsted acid such as p-TsOH to deliver the benzylic regioselective amides in 67-86% yield under mild conditions. The developed methodology provides alternative access to traditional metal-free carboxamidation via C-C and C-O bond formation with high atom economy. Furthermore, the developed approach was diversified to synthesize chiral indole-2-carboxamide derivatives with a moderate enantiomeric excess (61-73% ee) using an (R)-chiral phosphoric acid.
Collapse
Affiliation(s)
| | - Somya Bisht
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160062, Punjab, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
12
|
Zhao WT, Zhang JX, Chen BH, Shu W. Ligand-enabled Ni-catalysed enantioconvergent intermolecular Alkyl-Alkyl cross-coupling between distinct Alkyl halides. Nat Commun 2023; 14:2938. [PMID: 37217551 DOI: 10.1038/s41467-023-38702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
α-Tertiary aliphatic amides are key elements in organic molecules, which are abundantly present in natural products, pharmaceuticals, agrochemicals, and functional organic materials. Enantioconvergent alkyl-alkyl bond-forming process is one of the most straightforward and efficient, yet highly challenging ways to build such stereogenic carbon centers. Herein, we report an enantioselective alkyl-alkyl cross-coupling between two different alkyl electrophiles to access α-tertiary aliphatic amides. With a newly-developed chiral tridentate ligand, two distinct alkyl halides were successfully cross-coupled together to forge an alkyl-alkyl bond enantioselectively under reductive conditions. Mechanistic investigations reveal that one alkyl halides exclusively undergo oxidative addition with nickel versus in-situ formation of alkyl zinc reagents from the other alkyl halides, rendering formal reductive alkyl-alkyl cross-coupling from easily available alkyl electrophiles without preformation of organometallic reagents.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jian-Xin Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Bi-Hong Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
13
|
Wu FP, Gu XW, Geng HQ, Wu XF. Copper-catalyzed defluorinative arylboration of vinylarenes with polyfluoroarenes. Chem Sci 2023; 14:2342-2347. [PMID: 36873842 PMCID: PMC9977451 DOI: 10.1039/d2sc06472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
An unprecedented but challenging defluorinative arylboration has been achieved. Enabled by a copper catalyst, an interesting procedure on defluorinative arylboration of styrenes has been established. With polyfluoroarenes as the substrates, this methodology offers flexible and facile access to provide a diverse assortment of products under mild reaction conditions. In addition, by using a chiral phosphine ligand, an enantioselective defluorinative arylboration was also realized, affording a set of chiral products with unprecedented levels of enantioselectivity.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
14
|
Liang Z, Wang K, Sun Q, Peng Y, Bao X. Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chem Commun (Camb) 2023; 59:752-755. [PMID: 36541573 DOI: 10.1039/d2cc03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An iron-catalyzed decarboxylative C-N coupling of α-amino acids with dioxazolones is described herein to synthesize amide derivatives under visible-light. The desired products can be given in good to excellent yields under simple, mild, and oxidant-free conditions. This protocol provides a practical route for the transformation of α-amino acids to the corresponding amides. Computational studies were carried out to shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Zhanqun Liang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Byun S, Farah AO, Wise HR, Katchmar A, Cheong PHY, Scheidt KA. Enantioselective Copper-Catalyzed Borylative Amidation of Allenes. J Am Chem Soc 2022; 144:22850-22857. [DOI: 10.1021/jacs.2c10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Henry R. Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Andrew Katchmar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Paul H.-Y. Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
16
|
Duan M, Wang Y, Zhu S. Nickel-catalyzed asymmetric 1,2-alkynylboration of vinylarenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Ni C, Ma X, Yang Z, Roesky HW. Chemoselective Hydroboration of Isocyanates Catalyzed by Commercially Available NaH. ChemistrySelect 2022. [DOI: 10.1002/slct.202202878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congjian Ni
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry Georg-August-Universität Tammannstrasse 4 D-37077 Göttingen Germany
| |
Collapse
|
18
|
Abstract
The asymmetric hydroaminocarbonylation of olefins represents a straightforward approach for the synthesis of enantioenriched amides, but is hampered by the necessity to employ CO gas, often at elevated pressures. We herein describe, as an alternative, an enantioselective hydrocarbamoylation of alkenes leveraging dual copper hydride and palladium catalysis to enable the use of readily available carbamoyl chlorides as a practical carbamoylating reagent. The protocol is applicable to various types of olefins, including alkenyl arenes, terminal alkenes, and 1,1-disubstituted alkenes. Substrates containing a diverse range of functional groups as well as heterocyclic substructures undergo functionalization to provide α- and β-chiral amides in good yields and with excellent enantioselectivities.
Collapse
Affiliation(s)
- Sheng Feng
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Yuyang Dong
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| |
Collapse
|
19
|
Yang LM, Zeng HH, Liu XL, Ma AJ, Peng JB. Copper catalyzed borocarbonylation of benzylidenecyclopropanes through selective proximal C-C bond cleavage: synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds. Chem Sci 2022; 13:7304-7309. [PMID: 35799816 PMCID: PMC9214919 DOI: 10.1039/d2sc01992b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
A copper catalyzed borocarbonylation of BCPs via proximal C-C bond cleavage for the synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds has been developed. Using substituted benzylidenecyclopropanes (BCPs) and chloroformates as starting material, a broad range of γ-boryl-γ,δ-unsaturated esters were prepared in moderate to excellent yields with excellent regio- and stereoselectivity. Besides, when aliphatic acid chlorides were used in this reaction, γ-boryl-γ,δ-unsaturated ketones could be produced in excellent yields. When substituted BCPs were used as substrates, the borocarbonylation occurred predominantly at the proximal C-C bond trans to the phenyl group in a regio- and stereoselective manner, which leads to the Z-isomers as the products. This efficient methodology involves the cleavage of a C-C bond and the formation of a C-C bond as well as a C-B bond, and provides a new method for the proximal C-C bond difunctionalization of BCPs.
Collapse
Affiliation(s)
- Li-Miao Yang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Hui-Hui Zeng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
20
|
Feng S, Dong Y, Buchwald SL. Enantioselective Hydrocarbamoylation of Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sheng Feng
- Massachusetts Institute of Technology Chemistry 235 Albany St1050 02139 Cambridge CHINA
| | - Yuyang Dong
- Massachusetts Institute of Technology Chemistry CHINA
| | - Stephen L. Buchwald
- Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts AvenueRoom18-490 2139 Cambridge UNITED STATES
| |
Collapse
|
21
|
Liu XL, Li L, Lin HZ, Deng JT, Zhang XZ, Peng JB. Copper-catalyzed 1,2-Borylacylation of 1,3-Enynes: synthesis of β-Alkynyl ketones. Chem Commun (Camb) 2022; 58:5968-5971. [PMID: 35475443 DOI: 10.1039/d2cc01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed 1,2-borylacylation of 1,3-enynes with B2pin2 and acid chlorides has been developed. Using readily available 1,3-enynes, B2pin2 and acid chlorides as substrates, a range of highly functionalized α,α-disubstituted β-alkynyl ketones were readily prepared under mild conditions in moderate to good yields. The borylacylated products can be easily derivatized to give several valuable structures. Notably, treatment of the products with NaBO3·4H2O provided 1,2-allenyl ketones, which is proposed to proceed via a retro-aldol process of the corresponding homopropargyl alcohols.
Collapse
Affiliation(s)
- Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Han-Ze Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| |
Collapse
|
22
|
Ding Z, Liu Z, Wang Z, Yu T, Xu M, Wen J, Yang K, Zhang H, Xu L, Li P. Catalysis with Diboron(4)/Pyridine: Application to the Broad-Scope [3 + 2] Cycloaddition of Cyclopropanes and Alkenes. J Am Chem Soc 2022; 144:8870-8882. [PMID: 35532758 DOI: 10.1021/jacs.2c03673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the extensive but non-recyclable use of tetraalkoxydiboron(4) compounds as stoichiometric reagents in diverse reactions, this article reports an atom-economical reaction using a commercial diboron(4) as the catalyst. The key to success was designing a catalytic cycle for radical [3 + 2] cycloaddition involving a pyridine cocatalyst to generate from the diboron(4) catalyst and reversibly mediate the transfer of boronyl radicals. In comparison with known [3 + 2] cycloaddition with transition metal-based catalysts, the current reaction features not only metal-free conditions, inexpensive and stable catalysts, and simple operation but also remarkably broadened substrate scope. In particular, previously unusable cyclopropyl ketones without an activating group and/or alkenes with 1,2-disubstitution and 1,1,2-trisubstitution patterns were successfully used for the first time. Consequently, challenging cyclopentane compounds with various levels of substitution (65 examples, 57 new products, up to six substituents at all five ring atoms) were readily prepared in generally high to excellent yield and diastereoselectivity. The reaction was also successfully applied in concise formal synthesis of an anti-obesity drug and building natural product-like complex bridged or spirocyclic compounds. Mechanistic experiments and computational investigation support the proposed radical relay catalysis featuring a pyridine-assisted boronyl radical catalyst. Overall, this work demonstrates the first approach to use tetraalkoxydiboron(4) compounds as catalysts and may lead to the development of new, green, and efficient transition metal-like boron-catalyzed organic reactions.
Collapse
Affiliation(s)
- Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhi Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kaiyan Yang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Wilhelmsen CA, Zhang X, Myhill JA, Morken JP. Enantioselective Synthesis of Tertiary β‐Boryl Amides by Conjunctive Cross‐Coupling of Alkenyl Boronates and Carbamoyl Chlorides. Angew Chem Int Ed Engl 2022; 61:e202116784. [PMID: 35090083 PMCID: PMC8960357 DOI: 10.1002/anie.202116784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Synthesis of versatile β tert-boryl amides is accomplished by conjunctive cross-coupling of α-substituted alkenyl boron "ate" complexes and carbamoyl chloride electrophiles. This reaction can be accomplished in an enantioselective fashion using a palladium catalyst in combination with MandyPhos. The addition of water results in enhanced chemoselectivity for the conjunctive coupling product relative to the Suzuki-Miyaura cross-coupling product. Transformations of the reaction products were examined as well as application to the synthesis of (+)-adalinine.
Collapse
Affiliation(s)
| | - Xuntong Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jesse A. Myhill
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
24
|
Morken JP, Wilhelmsen CA, Zhang X, Myhill JA. Enantioselective Synthesis of Tertiary β‐Boryl Amides by Conjunctive Cross‐Coupling of Alkenyl Boronates and Carbamoyl Chlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Patrick Morken
- Boston College Dept. of Chemistry 2609 Beacon Street, Merkert Chemistry Lab 02467 Chestnut Hill UNITED STATES
| | | | | | | |
Collapse
|
25
|
Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. J Am Chem Soc 2021; 143:20818-20827. [PMID: 34871492 DOI: 10.1021/jacs.1c09148] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Tian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
28
|
Yuan Y, Wu FP, Wu XF. Copper-catalyzed borofunctionalization of styrenes with B 2pin 2 and CO. Chem Sci 2021; 12:13777-13781. [PMID: 34760162 PMCID: PMC8549821 DOI: 10.1039/d1sc04774d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
The construction of structurally complexed and high-value chemical molecules from simple and readily available feedstocks is a long-standing challenge to chemists. Here, we describe a copper-catalyzed borofunctionalization of styrenes with B2pin2 and carbon monoxide. A set of new sodium cyclic borates were obtained with NaOtBu as the base. These unique sodium cyclic borates can be easily converted into a variety of multifunctional β-boryl vinyl esters, boryl carbonates, β-boryl aldehydes, and boryl vinyl ether. In addition, the procedure also features good functional group tolerance and utilizes CO as the C1 source. A new copper-catalyzed borofunctionalization of styrenes with B2pin2 and carbon monoxide has been developed.![]()
Collapse
Affiliation(s)
- Yang Yuan
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 China
| |
Collapse
|
29
|
Yuan Y, Zhao F, Wu XF. Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides. Chem Sci 2021; 12:12676-12681. [PMID: 34703553 PMCID: PMC8494041 DOI: 10.1039/d1sc04210f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Secondary amides are omnipresent structural motifs in peptides, natural products, pharmaceuticals, and agrochemicals. The copper-catalyzed enantioselective hydroaminocarbonylation of alkenes described in this study provides a direct and practical approach for the construction of α-chiral secondary amides. An electrophilic amine transfer reagent possessing a 4-(dimethylamino)benzoate group was the key to the success. This method also features broad functional group tolerance and proceeds under very mild conditions, affording a set of α-chiral secondary amides in high yields (up to 96% yield) with unprecedented levels of enantioselectivity (up to >99% ee). α,β-Unsaturated secondary amides can also be produced though the method by using alkynes as the substrate.
Collapse
Affiliation(s)
- Yang Yuan
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
30
|
Shen MH, Wan TB, Huang XR, Li Y, Qian DH, Xu HD, Xu D. Copper catalyzed borylative cyclization of 3-arylallyl carbamoyl chloride with B2pin2: stereoselective synthesis of cis-2-aryl-3-boryl-γ-lactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Jiang Y, Gu Z, Chen Y, Xia J. Pd‐Catalyzed Amidation of Silyl Enol Ethers With CO and Azides via an Isocyanate Intermediate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Qian Jiang
- School Chemistry of Chemical Engineering Guizhou University 550025 Guiyang P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
| | - Zheng‐Yang Gu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province Yancheng Institute of Technology 224003 Jiangsu P. R. China
| | - Ye Chen
- School Chemistry of Chemical Engineering Guizhou University 550025 Guiyang P. R. China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) University of Chinese Academy of Sciences Chinese Academy of Sciences 730000 Lanzhou P. R. China
| |
Collapse
|
32
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Three-component reaction of gem-difluorinated cyclopropanes with alkenes and B 2pin 2 for the synthesis of monofluoroalkenes. Chem Commun (Camb) 2021; 57:6400-6403. [PMID: 34085685 DOI: 10.1039/d1cc01620b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Borylative difunctionalization of alkenes has emerged as a powerful approach for synthesizing highly functionalized molecules. Herein, dual Cu/Pd-catalysed borylfluoroallylation of alkenes was smoothly achieved by using gem-difluorinated cyclopropanes and B2pin2, providing the corresponding monofluoroalkene scaffolds in moderate to high yields with excellent stereoselectivity. Moreover, an array of synthetic building blocks can be obtained by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
33
|
Sahoo RK, Sarkar N, Nembenna S. Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:11991-12000. [PMID: 33638314 DOI: 10.1002/anie.202100375] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/15/2022]
Abstract
Herein, a remarkable conjugated bis-guanidinate (CBG) supported zinc hydride, [{LZnH}2 ; L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr); Ar=2,6-Et2 -C6 H3 }] (I) catalyzed partial reduction of heteroallenes via hydroboration is reported. A large number of aryl and alkyl isocyanates, including electron-donating and withdrawing groups, undergo reduction to obtain selectively N-boryl formamide, bis(boryl) hemiaminal and N-boryl methyl amine products. The compound I effectively catalyzes the chemoselective reduction of various isocyanates, in which the construction of the amide bond occurs. Isocyanates undergo a deoxygenation hydroboration reaction, in which the C=O bond cleaves, leading to N-boryl methyl amines. Several functionalities such as nitro, cyano, halide, and alkene groups are well-tolerated. Furthermore, a series of kinetic, control experiments and structurally characterized intermediates suggest that the zinc hydride species are responsible for all reduction steps and breaking the C=O bond.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
34
|
Porey A, Mondal BD, Guin J. Hydrogen-Bonding Assisted Catalytic Kinetic Resolution of Acyclic β-Hydroxy Amides. Angew Chem Int Ed Engl 2021; 60:8786-8791. [PMID: 33368918 DOI: 10.1002/anie.202015004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Indexed: 01/07/2023]
Abstract
Enantioenriched acyclic α-substituted β-hydroxy amides are valuable compounds in chemical, material and medicinal sciences, but their enantioselective synthesis remains challenging. A catalytic kinetic resolution (KR) of such amides with selectivity factor(s) up to >200 is developed via enantioselective acylation of primary alcohol with N-heterocyclic carbene. An enhanced selectivity for the catalytic KR process is realized using cyclic tertiary amine as base additive. Diastereomeric transition state models for the process are proposed to rationalize the origin of enantioselectivity.
Collapse
Affiliation(s)
- Arka Porey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
35
|
Porey A, Mondal BD, Guin J. Hydrogen‐Bonding Assisted Catalytic Kinetic Resolution of Acyclic β‐Hydroxy Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arka Porey
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Joyram Guin
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| |
Collapse
|
36
|
Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Qiu X, Xu L, Wang S, Dai Y, Feng Y, Gong C, Tao C. Copper-catalyzed borylative aminomethylation of C-C double and triple bonds with N,O-acetal. Chem Commun (Camb) 2021; 57:3279-3282. [PMID: 33651061 DOI: 10.1039/d1cc00093d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed borylaminomethylation of multiple carbon-carbon bonds with N,O-acetal and bis(pinacolato)diboron has been disclosed that offers efficient and expedient access to γ-amino boronates. The products contain a valuable amine and boronate, which are amenable to further elaboration, and have versatile synthetic utilities.
Collapse
Affiliation(s)
- Xianfan Qiu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Li H, Long J, Li Y, Wang W, Pang H, Yin G. Nickel‐Catalyzed Regioselective Arylboration of Conjugated Dienes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haoyang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Jiao Long
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Yuqiang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Wang Wang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Hailiang Pang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Guoyin Yin
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| |
Collapse
|
39
|
Yu X, Zheng H, Zhao H, Lee BC, Koh MJ. Iron‐Catalyzed Regioselective Alkenylboration of Olefins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolong Yu
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Hongling Zheng
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Haonan Zhao
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Boon Chong Lee
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| |
Collapse
|
40
|
Kanti Das K, Manna S, Panda S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem Commun (Camb) 2021; 57:441-459. [PMID: 33350405 DOI: 10.1039/d0cc06460b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric multicomponent reactions allow stitching several functional groups in an enantioselective and atom economical manner. The introduction of boron-based reagents as a multicomponent coupling partner has its own merits. In addition to being non-toxic and highly stable, organoboron compounds can be easily converted to other functional groups in a stereoselective manner. In the last decade several transition metal catalyzed asymmetric multicomponent strategies have been evolved using boron based reagents. This review will discuss the merits and scope of multicomponent strategies based on their difference in the reaction mechanism and transition metals involved.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | |
Collapse
|
41
|
Li X, Ren X, Wu H, Zhao W, Tang X, Huang G. Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Huang L, Wang Y, Liu J, Li S, Zhang W, Lan Y. Mechanistic Study of Cu-Catalyzed Addition Reaction of lsocyanates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Yang C, Jia X. Recent Advances in Copper-Catalyzed Boron-Reagent-Involved Multicomponent Difunctionalization of Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Baughman NN, Akhmedov NG, Petersen JL, Popp BV. Experimental and Computational Analysis of CO2 Addition Reactions Relevant to Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promoted Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Notashia N. Baughman
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Brian V. Popp
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
45
|
Shen BX, Min XT, Hu YC, Qian LL, Yang SN, Wan B, Chen QA. Copper-catalyzed boroacylation of allenes to access tetrasubstituted vinylboronates. Org Biomol Chem 2020; 18:9253-9260. [PMID: 33150922 DOI: 10.1039/d0ob02008g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A distinct copper-catalyzed boroacylation of allenes with acyl chlorides and bis(pinacolato)diboron is developed. For aromatic acyl chlorides, 1,2-boroacylation of allenes readily takes place, leading to the formation of tetrasubstituted vinylboronates with exclusive (E)-stereoselectivity. In comparison, the employment of alkyl acyl chlorides as electrophiles alters the selectivity to 2,3-boroacylated products. Additionally, the product can easily undergo Suzuki-Miyaura cross-coupling to afford tetrasubstituted alkene with complete retention of the configuration.
Collapse
Affiliation(s)
- Bing-Xue Shen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yu X, Zheng H, Zhao H, Lee BC, Koh MJ. Iron‐Catalyzed Regioselective Alkenylboration of Olefins. Angew Chem Int Ed Engl 2020; 60:2104-2109. [DOI: 10.1002/anie.202012607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaolong Yu
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Hongling Zheng
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Haonan Zhao
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Boon Chong Lee
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| |
Collapse
|
47
|
Shi L, Xing L, Hu W, Shu W. Regio‐ and Enantioselective Ni‐Catalyzed Formal Hydroalkylation, Hydrobenzylation, and Hydropropargylation of Acrylamides to α‐Tertiary Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lou Shi
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Ling‐Ling Xing
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wen‐Bo Hu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
48
|
Shi L, Xing LL, Hu WB, Shu W. Regio- and Enantioselective Ni-Catalyzed Formal Hydroalkylation, Hydrobenzylation, and Hydropropargylation of Acrylamides to α-Tertiary Amides. Angew Chem Int Ed Engl 2020; 60:1599-1604. [PMID: 32964597 DOI: 10.1002/anie.202011339] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/20/2022]
Abstract
The development of enantioselective alkyl-alkyl cross-couplings with coinstantaneous formation of a stereogenic center without the use of sensitive organometallic species is attractive yet challenging. Herein, we report the intermolecular regio- and enantioselective formal hydrofunctionalizations of acrylamides, forging a stereogenic center α-position to the newly formed Csp3 -Csp3 bond for the first time. The use of a newly developed chiral ligand enables the electronically-reversed formal hydrofunctionalizations, including hydroalkylation, hydrobenzylation, and hydropropargylation, offering an efficient way to access diverse enantioenriched amides with a tertiary α-stereogenic carbon center which is facile to racemize. This operationally simple protocol allows for the anti-Markovnikov enantioselective hydroalkylation, and unprecedented hydrobenzylation, hydropropargylation under mild conditions with excellent functional group compatibility, delivering a wide range of amides with excellent levels of enantioselectivity.
Collapse
Affiliation(s)
- Lou Shi
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Ling-Ling Xing
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wen-Bo Hu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
49
|
Talbot FJT, Dherbassy Q, Manna S, Shi C, Zhang S, Howell GP, Perry GJP, Procter DJ. Copper-Catalyzed Borylative Couplings with C-N Electrophiles. Angew Chem Int Ed Engl 2020; 59:20278-20289. [PMID: 32544295 PMCID: PMC7689787 DOI: 10.1002/anie.202007251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Copper-catalyzed borylative multicomponent reactions (MCRs) involving olefins and C-N electrophiles are a powerful tool to rapidly build up molecular complexity. The products from these reactions contain multiple functionalities, such as amino, cyano and boronate groups, that are ubiquitous in medicinal and process chemistry programs. Copper-catalyzed MCRs are particularly attractive because they use a relatively abundant and non-toxic catalyst to selectively deliver high-value products from simple feedstocks such as olefins. In this Minireview, we explore this rapidly emerging field and survey the borylative union of allenes, dienes, styrenes and other olefins, with imines, nitriles and related C-N electrophiles.
Collapse
Affiliation(s)
- Fabien J. T. Talbot
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Quentin Dherbassy
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Srimanta Manna
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Chunling Shi
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of Material and Chemical EngineeringXuzhou University of TechnologyXuzhou221018P. R. China
| | - Shibo Zhang
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gareth P. Howell
- Chemical Development Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
50
|
Dherbassy Q, Manna S, Talbot FJT, Prasitwatcharakorn W, Perry GJP, Procter DJ. Copper-catalyzed functionalization of enynes. Chem Sci 2020; 11:11380-11393. [PMID: 34094380 PMCID: PMC8163025 DOI: 10.1039/d0sc04012f] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
The copper-catalyzed functionalization of enyne derivatives has recently emerged as a powerful approach in contemporary synthesis. Enynes are versatile and readily accessible substrates that can undergo a variety of reactions to yield densely functionalized, enantioenriched products. In this perspective, we review copper-catalyzed transformations of enynes, such as boro- and hydrofunctionalizations, copper-mediated radical difunctionalizations, and cyclizations. Particular attention is given to the regiodivergent functionalization of 1,3-enynes, and the current mechanistic understanding of such processes.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Srimanta Manna
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Fabien J T Talbot
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Watcharapon Prasitwatcharakorn
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| |
Collapse
|