1
|
Yang D, Xiao Z, Li K, Hou J, Zhang F, Qiao J, Li N, Wen M. Eukaryotic Centromere Remodeling: Plasticity, Dynamics, and Holocentromere Formation. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421727 DOI: 10.1111/pce.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Eukaryotic centromeres highlight the remarkable plasticity of eukaryotic chromosomes through their conserved functionality and sequence divergence. Holocentric chromosomes, where centromere activity is distributed along the entire chromosome length, offer a unique model for investigating the molecular mechanisms underlying adaptive evolution between centromeres and chromosomes. In this review, we summarise and speculate on the multiple changes and prerequisites potentially involved in the evolution of holocentromeres. The interplay between environmental factors, chromosomal rearrangements, and centromere plasticity drives the transition from regional to holocentric characteristics. The centromeric histone H3 (CenH3) protein mediates neocentromere formation by recognising non-centromeric chromosomal regions with appropriate AT content, thereby facilitating chromosome restructuring in the transition from regional to holocentric chromosomes. Dynamic changes in repetitive sequences provide functional sites for centromere assembly, chromosomal recombination and repair and centromere spreading and maturation. Epigenetic modifications maintain functional coordination among multiple centromeric units by modulating chromatin states, CenH3 localisation, and kinetochore assembly. This review provides a comprehensive framework for understanding the evolutionary mechanisms of holocentromeres derived from monocentromere and offers insights into the design of artificial centromeres.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Zhaoxin Xiao
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
| | - Ke Li
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
| | - Jiayi Hou
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
| | - Fengfeng Zhang
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
| | - Jianjun Qiao
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Mingzhang Wen
- State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Synthetic Biology and Biomanufacturing, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Nho S, Kim H. Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements. BMB Rep 2025; 58:24-32. [PMID: 39757199 PMCID: PMC11788527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
Collapse
Affiliation(s)
- Sihyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
3
|
Song A, Wang Y, Liu C, Yu J, Zhang Z, Lan L, Lin H, Zhao J, Li G. Replication-coupled inheritance of chromatin states. CELL INSIGHT 2024; 3:100195. [PMID: 39391004 PMCID: PMC11462216 DOI: 10.1016/j.cellin.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
During the development of eukaryote, faithful inheritance of chromatin states is central to the maintenance of cell fate. DNA replication poses a significant challenge for chromatin state inheritance because every nucleosome in the genome is disrupted as the replication fork passes. It has been found that many factors including DNA polymerases, histone chaperones, as well as, RNA Pol II and histone modifying enzymes coordinate spatially and temporally to maintain the epigenome during this progress. In this review, we provide a summary of the detailed mechanisms of replication-coupled nucleosome assembly and post-replication chromatin maturation, highlight the inheritance of chromatin states and epigenome during these processes, and discuss the future directions and challenges in this field.
Collapse
Affiliation(s)
- Aoqun Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunting Wang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixu Zhang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Lin
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Guohong Li
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
5
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Wei G, Hu R, Lu W, Wang Z, Zhao Q. Bidirectional Peptide Translocation through Ultrasmall Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20831-20839. [PMID: 39301609 DOI: 10.1021/acs.langmuir.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
It is important to obtain the configuration of polypeptides and the sequence information on amino acids for understanding various life processes and many biological applications. Nanopores, as a newly developed single-molecule detection technology, exhibit unique advantages in real-time dynamics detection. Here, we designed a special peptide chain with 10 arginine in the head and achieved successful single-molecule detection by ultrasmall solid-state nanopores (2-3 nm). Unique bidirectional translocation signals were observed and explained under the framework of charge distribution of the peptide and interaction with the nanopore wall. Two natural peptide chains, histatin-5 and angiopep-2, were also explored by nanopore experiments to confirm our conjecture. Our designed peptide chain could realize multiple detections of the same peptide chain, offering possibilities for high-resolution peptide detection and fingerprinting by solid-state nanopores in the future.
Collapse
Affiliation(s)
- Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
9
|
Ji D, Xiao X, Luo A, Fan X, Ma J, Wang D, Xia M, Ma L, Wang PY, Li W, Chen P. FACT mediates the depletion of macroH2A1.2 to expedite gene transcription. Mol Cell 2024; 84:3011-3025.e7. [PMID: 39116874 DOI: 10.1016/j.molcel.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The histone variant macroH2A is generally linked to transcriptionally inactive chromatin, but how macroH2A regulates chromatin structure and functions in the transcriptional process remains elusive. This study reveals that while the integration of human macroH2A1.2 into nucleosomes does not affect their stability or folding dynamics, it notably hinders the maintenance of facilitates chromatin transcription's (FACT's) function. We show that FACT effectively diminishes the stability of macroH2A1.2-nucleosomes and expedites their depletion subsequent to the initial unfolding process. Furthermore, we identify the residue S139 in macroH2A1.2 as a critical switch to modulate FACT's function in nucleosome maintenance. Genome-wide analyses demonstrate that FACT-mediated depletion of macroH2A-nucleosomes allows the correct localization of macroH2A, while the S139 mutation reshapes macroH2A distribution and influences stimulation-induced transcription and cellular response in macrophages. Our findings provide mechanistic insights into the intricate interplay between macroH2A and FACT at the nucleosome level and elucidate their collective role in transcriptional regulation and immune response of macrophages.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Xiongxiong Fan
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Jingzhe Ma
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Dayi Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Chen P, Li G, Li W. Nucleosome Dynamics Derived at the Single-Molecule Level Bridges Its Structures and Functions. JACS AU 2024; 4:866-876. [PMID: 38559720 PMCID: PMC10976579 DOI: 10.1021/jacsau.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nucleosome, the building block of chromatin, plays pivotal roles in all DNA-related processes. While cryogenic-electron microscopy (cryo-EM) has significantly advanced our understanding of nucleosome structures, the emerging field of single-molecule force spectroscopy is illuminating their dynamic properties. This technique is crucial for revealing how nucleosome behavior is influenced by chaperones, remodelers, histone variants, and post-translational modifications, particularly in their folding and unfolding mechanisms under tension. Such insights are vital for deciphering the complex interplay in nucleosome assembly and structural regulation, highlighting the nucleosome's versatility in response to DNA activities. In this Perspective, we aim to consolidate the latest advancements in nucleosome dynamics, with a special focus on the revelations brought forth by single-molecule manipulation. Our objective is to highlight the insights gained from studying nucleosome dynamics through this innovative approach, emphasizing the transformative impact of single-molecule manipulation techniques in the field of chromatin research.
Collapse
Affiliation(s)
- Ping Chen
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department
of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory
for Tumor Invasion and Metastasis, Capital
Medical University, Beijing 100069, P. R. China
| | - Guohong Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- National
Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation
and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
11
|
Lei ZC, Wang X, Yang L, Qu H, Sun Y, Yang Y, Li W, Zhang WB, Cao XY, Fan C, Li G, Wu J, Tian ZQ. What can molecular assembly learn from catalysed assembly in living organisms? Chem Soc Rev 2024; 53:1892-1914. [PMID: 38230701 DOI: 10.1039/d3cs00634d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science, Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
12
|
Tong Z, Ai H, Xu Z, He K, Chu GC, Shi Q, Deng Z, Xue Q, Sun M, Du Y, Liang L, Li JB, Pan M, Liu L. Synovial sarcoma X breakpoint 1 protein uses a cryptic groove to selectively recognize H2AK119Ub nucleosomes. Nat Struct Mol Biol 2024; 31:300-310. [PMID: 38177667 DOI: 10.1038/s41594-023-01141-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/27/2023] [Indexed: 01/06/2024]
Abstract
The cancer-specific fusion oncoprotein SS18-SSX1 disturbs chromatin accessibility by hijacking the BAF complex from the promoters and enhancers to the Polycomb-repressed chromatin regions. This process relies on the selective recognition of H2AK119Ub nucleosomes by synovial sarcoma X breakpoint 1 (SSX1). However, the mechanism underlying the selective recognition of H2AK119Ub nucleosomes by SSX1 in the absence of ubiquitin (Ub)-binding capacity remains unknown. Here we report the cryo-EM structure of SSX1 bound to H2AK119Ub nucleosomes at 3.1-Å resolution. Combined in vitro biochemical and cellular assays revealed that the Ub recognition by SSX1 is unique and depends on a cryptic basic groove formed by H3 and the Ub motif on the H2AK119 site. Moreover, this unorthodox binding mode of SSX1 induces DNA unwrapping at the entry/exit sites. Together, our results describe a unique mode of site-specific ubiquitinated nucleosome recognition that underlies the specific hijacking of the BAF complex to Polycomb regions by SS18-SSX1 in synovial sarcoma.
Collapse
Affiliation(s)
- Zebin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Ziyu Xu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kezhang He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiang Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiaomei Xue
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yunxiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Lujun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Chen J, Feng X, Zhou X, Li Y. Role of the tripartite motif-containing (TRIM) family of proteins in insulin resistance and related disorders. Diabetes Obes Metab 2024; 26:3-15. [PMID: 37726973 DOI: 10.1111/dom.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.
Collapse
Affiliation(s)
- Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Centre for Endocrine and Metabolic disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Centre for Metabolic disease, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Zhou
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Li
- Department of Anaesthesiology, Medical Centre of Anaesthesiology and Pain, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
15
|
H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation. J Mol Biol 2023; 435:167936. [PMID: 36610636 DOI: 10.1016/j.jmb.2022.167936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.
Collapse
|
16
|
Luo A, Kong J, Chen J, Xiao X, Lan J, Li X, Liu C, Wang PY, Li G, Li W, Chen P. H2B ubiquitination recruits FACT to maintain a stable altered nucleosome state for transcriptional activation. Nat Commun 2023; 14:741. [PMID: 36765085 PMCID: PMC9918737 DOI: 10.1038/s41467-023-36467-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Histone H2B mono-ubiquitination at lysine 120 (ubH2B) has been found to regulate transcriptional elongation by collaborating with the histone chaperone FACT (Facilitates Chromatin Transcription) and plays essential roles in chromatin-based transcriptional processes. However, the mechanism of how ubH2B directly collaborates with FACT at the nucleosome level still remains elusive. In this study, we demonstrate that ubH2B impairs the mechanical stability of the nucleosome and helps to recruit FACT by enhancing the binding of FACT on the nucleosome. FACT prefers to bind and deposit H2A-ubH2B dimers to form an intact nucleosome. Strikingly, the preferable binding of FACT on ubH2B-nucleosome greatly enhances nucleosome stability and maintains its integrity. The stable altered nucleosome state obtained by ubH2B and FACT provides a key platform for gene transcription, as revealed by genome-wide and time-course ChIP-qPCR analyses. Our findings provide mechanistic insights of how ubH2B directly collaborates with FACT to regulate nucleosome dynamics for gene transcription.
Collapse
Affiliation(s)
- Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guohong Li
- University of Chinese Academy of Sciences, Beijing, 100049, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Chen JJ, Stermer D, Tanny JC. Decoding histone ubiquitylation. Front Cell Dev Biol 2022; 10:968398. [PMID: 36105353 PMCID: PMC9464978 DOI: 10.3389/fcell.2022.968398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Histone ubiquitylation is a critical part of both active and repressed transcriptional states, and lies at the heart of DNA damage repair signaling. The histone residues targeted for ubiquitylation are often highly conserved through evolution, and extensive functional studies of the enzymes that catalyze the ubiquitylation and de-ubiquitylation of histones have revealed key roles linked to cell growth and division, development, and disease in model systems ranging from yeast to human cells. Nonetheless, the downstream consequences of these modifications have only recently begun to be appreciated on a molecular level. Here we review the structure and function of proteins that act as effectors or “readers” of histone ubiquitylation. We highlight lessons learned about how ubiquitin recognition lends specificity and function to intermolecular interactions in the context of transcription and DNA repair, as well as what this might mean for how we think about histone modifications more broadly.
Collapse
|
18
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
19
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
20
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Hu R, Liu C, Lu W, Wei G, Yu D, Li W, Chen P, Li G, Zhao Q. Probing the Effect of Ubiquitinated Histone on Mononucleosomes by Translocation Dynamics Study through Solid-State Nanopores. NANO LETTERS 2022; 22:888-895. [PMID: 35060726 DOI: 10.1021/acs.nanolett.1c02978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-translational modifications (PTMs), such as ubiquitination, are critically important in regulating genetic expressions by adjusting the nucleosome stability. A fast and label-free technology inspecting dynamic nucleosome structures can facilitate the interrogation of PTMs effects. Here we leverage the advantages of mechanically stable solid-state nanopores and detect the effect of a ubiquitinated histone on mononucleosomes at the single-molecule level. By comparing the translocation dynamics of natural and cross-linked mononucleosomes, we verified that the nucleosomal DNA unravelled from histones in natural mononucleosomes. Furthermore, we found that a turning point of voltage corresponds to the onset of nucleosome rupture. More importantly, we reveal that ubH2A stabilizes the nucleosome by shifting the turning point to a larger value and investigated the effect of ubiquitination on different histones (ubH2A and ubH2B). These findings open promising possibilities for developing a miniaturized and portable device for the fast screening of PTMs on nucleosomes.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Dapeng Yu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Technology and Department of Physics, South University of Science and Technology of China (SUSTech), Shenzhen 518055, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
22
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Wang YZ, Liu C, Zhao J, Yu J, Luo A, Xiao X, Dou SX, Ma L, Wang PY, Li M, Li G, Yan J, Chen P, Li W. H2A mono-ubiquitination differentiates FACT's functions in nucleosome assembly and disassembly. Nucleic Acids Res 2021; 50:833-846. [PMID: 34951461 PMCID: PMC8789066 DOI: 10.1093/nar/gkab1271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
The histone chaperone FACT (FAcilitates Chromatin Transcription) plays an essential role in transcription and DNA replication by its dual functions on nucleosome assembly to maintain chromatin integrity and nucleosome disassembly to destabilize nucleosome and facilitate its accessibility simultaneously. Mono-ubiquitination at Lysine 119 of H2A (ubH2A) has been suggested to repress transcription by preventing the recruitment of FACT at early elongation process. However, up to date, how ubH2A directly affects FACT on nucleosome assembly and disassembly remains elusive. In this study, we demonstrated that the dual functions of FACT are differently regulated by ubH2A. The H2A ubiquitination does not affect FACT’s chaperone function in nucleosome assembly and FACT can deposit ubH2A–H2B dimer on tetrasome to form intact nucleosome. However, ubH2A greatly restricts FACT binding on nucleosome and inhibits its activity of nucleosome disassembly. Interestingly, deubiquitination of ubH2A rescues the nucleosome disassembly function of FACT to activate gene transcription. Our findings provide mechanistic insights of how H2A ubiquitination affects FACT in breaking nucleosome and maintaining its integrity, which sheds light on the biological function of ubH2A and various FACT’s activity under different chromatin states.
Collapse
Affiliation(s)
- Yi-Zhou Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
24
|
Zhang S, Xiao X, Kong J, Lu K, Dou SX, Wang PY, Ma L, Liu Y, Li G, Li W, Zhang H. DNA polymerase Gp90 activities and regulations on strand displacement DNA synthesis revealed at single-molecule level. FASEB J 2021; 35:e21607. [PMID: 33908664 DOI: 10.1096/fj.202100033rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/11/2022]
Abstract
Strand displacement DNA synthesis (SDDS) is an essential step in DNA replication. With magnetic tweezers, we investigated SDDS kinetics of wild-type gp90 and its exonuclease-deficient polymerase gp90 exo- at single-molecule level. A novel binding state of gp90 to the fork flap was confirmed prior to SDDS, suggesting an intermediate in the initiation of SDDS. The rate and processivity of SDDS by gp90 exo- or wt-gp90 are increased with force and dNTP concentration. The rate and processivity of exonuclease by wt-gp90 are decreased with force. High GC content decreases SDDS and exonuclease processivity but increases exonuclease rate for wt-gp90. The high force and dNTP concentration and low GC content facilitate the successive SDDS but retard the successive exonuclease for wt-gp90. Furthermore, increasing GC content accelerates the transition from SDDS or exonuclease to exonuclease. This work reveals the kinetics of SDDS in detail and offers a broader cognition on the regulation of various factors on SDDS at single-polymerase level.
Collapse
Affiliation(s)
- Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Lu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuru Liu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
25
|
Basu A, Bobrovnikov DG, Ha T. DNA mechanics and its biological impact. J Mol Biol 2021; 433:166861. [PMID: 33539885 DOI: 10.1016/j.jmb.2021.166861] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Almost all nucleoprotein interactions and DNA manipulation events involve mechanical deformations of DNA. Extraordinary progresses in single-molecule, structural, and computational methods have characterized the average mechanical properties of DNA, such as bendability and torsional rigidity, in high resolution. Further, the advent of sequencing technology has permitted measuring, in high-throughput, how such mechanical properties vary with sequence and epigenetic modifications along genomes. We review these recent technological advancements, and discuss how they have contributed to the emerging idea that variations in the mechanical properties of DNA play a fundamental role in regulating, genome-wide, diverse processes involved in chromatin organization.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|