1
|
Sun Q, Feng X, Wang X, Shi H, Su J, Wang M, Luo G, Xu X. Enantioselective ortho-C-H Addition of Aromatic Amines to Alkenes by Bulky Chiral Anilido-Oxazoline Scandium Complexes. J Am Chem Soc 2025; 147:13658-13666. [PMID: 40199727 DOI: 10.1021/jacs.5c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The enantioselective C-H addition of anilines to alkenes represents an ideal protocol for the synthesis of chiral aromatic amines in terms of step- and atom-economy. However, this field remains predominantly unexplored. Herein, a series of newly designed bulky chiral anilido-oxazoline ligand precursors were synthesized, and the corresponding rare-earth metal alkyl complexes were obtained successfully. The resultant scandium complexes exhibit high regioselectivity for the ortho-C-H addition of tertiary anilines to unactivated alkenes, providing a wide range of chiral alkylated anilines in high yields (up to 98% yield) with excellent enantioselectivity (up to 98% ee). Moreover, the addition products can be easily converted into biorelevant derivatives and pharmacophore-containing skeletons.
Collapse
Affiliation(s)
- Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiangli Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xintong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Haowen Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jianhong Su
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mingxuan Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Ma Y, Mishra A, Jiao T, Chang W, Lou SJ, Nishiura M, Cong X, Hou Z. Heteroatom-Assisted Regio- and Stereoselective Hydrosilylation of Unsymmetric Internal Alkynes by Scandium Catalyst. Angew Chem Int Ed Engl 2025; 64:e202502665. [PMID: 39962935 DOI: 10.1002/anie.202502665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
The catalytic hydrosilylation of alkynes with hydrosilanes is the most straightforward and atom-efficient method for the synthesis of silylalkenes. However, the hydrosilylation of unsymmetrical internal alkynes often encounters regio- and stereoselectivity challenges. Herein, we report the regio- and syn-stereoselective hydrosilylation of unsymmetrical internal alkynes bearing heteroatom functional groups with hydrosilanes by half-sandwich scandium catalyst. This protocol offers an atom-efficient route for the synthesis of a new family of heteroatom (O, S or N)-functionalized multisubstituted silylalkenes from a variety of internal homopropargyl thioethers, ethers and tertiary amines and hydrosilanes, featuring 100 % atom-efficiency, broad substrate scope, and excellent regio- and syn-stereoselectivity (>19 : 1 r.r. and >19 : 1 syn/anti). The mechanistic details have been elucidated by control experiments and isolation and examination of some key reaction intermediates. It was revealed that an interaction between the heteroatom (O, S or N) in the internal alkynes and the Sc center was critical for achieving the unprecedented high selectivity.
Collapse
Affiliation(s)
- Yuanhong Ma
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tenggang Jiao
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Wendi Chang
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Wang H, Lin S, Hong H, Hu Z, Huang Y, Zhang X, Lin SN, Yang BM. Photo-induced decarboxylative radical cascade cyclization of unactivated alkenes: access to CF- and CF 2-substituted ring-fused imidazoles. RSC Adv 2025; 15:12739-12745. [PMID: 40264862 PMCID: PMC12013602 DOI: 10.1039/d5ra02023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
A mild and effective visible-light-induced decarboxylative radical cascade reaction of olefin-containing imidazoles with α-fluorinated carboxylic acids as building blocks containing CF or ArCF2 moieties, has been developed to afford a series of monofluoromethylated or aryldifluoromethylated polycyclic imidazoles in medium to excellent yields with features of simple operation, available raw materials, and wide substrate scopes. In addition, the mechanistic experiments indicated that the methodology involved a radical pathway.
Collapse
Affiliation(s)
- Huinan Wang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Shengbao Lin
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Hui Hong
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Zhangjie Hu
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Yawen Huang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Xiaolan Zhang
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Sheng-Nan Lin
- College of Chemistry and Environment Science, Shangrao Normal University Shangrao 334001 China
| | - Bin-Miao Yang
- The International Joint Institute of Tianjin University, Fuzhou, Tianjin University Tianjin 300072 China
| |
Collapse
|
4
|
Tan X, Hu J, Li Y, Luo L, Wang X, Cao D, Luo G. Mechanisms and Origins of Regioselectivity in Rare-Earth-Catalyzed C-H Functionalization of Anisoles and Thioanisoles. Inorg Chem 2025; 64:5778-5788. [PMID: 40073416 DOI: 10.1021/acs.inorgchem.5c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The direct catalytic C-H functionalization of aromatic compounds such as anisoles and thioanisoles is of great interest and significance. However, achieving precise regioselectivity remains a major challenge. In this study, we conducted comprehensive density functional theory calculations to explore the mechanisms of rare-earth-catalyzed regioselective C-H alkylation, borylation, and silylation of anisole and thioanisole. The results reveal that in cationic C-H alkylation systems, the alkene insertion step follows a substrate-assisted mechanism, in which an additional substrate molecule acts as a ligand to facilitate the transformation. In neutral C-H borylation and silylation systems, although mononuclear hydride species readily dimerize into binuclear hydride species due to thermodynamic stability, the catalytic process predominantly proceeds via a mononuclear pathway. Furthermore, the origins of regioselectivity were thoroughly elucidated. A detailed analysis of electronic and steric effects in related transition states reveals that, for anisole, regioselectivity is primarily governed by ring strain. Since α-C(sp3)-H activation involves the formation of a highly strained three-membered ring, the reaction preferentially occurs at the ortho-C(sp2)-H site, forming a less strained four-membered ring. In contrast, for thioanisole, electronic effects play a decisive role, driving C-H activation at the more negatively charged α-C(sp3) site due to stronger metal-carbon interactions.
Collapse
Affiliation(s)
- Xinyu Tan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lun Luo
- School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xintong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Deyue Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
5
|
Hao N, Jiao T, Sun Z, Mishra A, Zhuo Q, Nishiura M, Hou Z, Cong X. Regio- and Stereoselective Hydroalkynylation of Internal Alkynes with Terminal Alkynes by Half-Sandwich Rare-Earth Catalysts. J Am Chem Soc 2025; 147:6149-6161. [PMID: 39910719 DOI: 10.1021/jacs.4c17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The regio- and stereoselective hydroalkynylation of internal alkynes with terminal alkynes is of great interest and importance as a straightforward route for synthesizing multisubstituted 1,3-enynes. However, this transformation often suffers from regio- and stereoselectivity issues when working with unsymmetrical internal alkynes. Herein, we report for the first time the regio- and syn-stereoselective hydroalkynylation of a variety of heteroatom-functionalized unsymmetrical internal alkynes including homopropargyl ethers, thioethers, and tertiary amines with terminal alkynes by half-sandwich rare-earth catalysts. This protocol provides an atom-efficient and straightforward route for the synthesis of a new family of heteroatom (O, S, or N)-functionalized 1,3-enynes, featuring 100% atom-efficiency, broad substrate scope, and high regio- and syn-stereoselectivity (>19:1 r.r. and >19:1 syn/anti). The mechanistic details have been elucidated by deuterium-labeling experiments, control experiments, and isolation and transformations of key reaction intermediates, revealing that the reaction proceeded through the C(sp)-H deprotonation of a terminal alkyne by a half-sandwich scandium alkyl species to form a catalytically active dimeric half-sandwich scandium tetraalkynyl species followed by heteroatom-assisted insertion of internal alkyne into the Sc-alkynyl bond and the subsequent protonolysis of the resulting Sc-alkenyl bond with another terminal alkyne molecule. The coordination of the heteroatom (O, S, or N) of internal alkynes to the catalyst metal center plays a critically important role in achieving a high level of reactivity and regio- and stereoselectivity. Remarkably, the catalytically active dimeric half-sandwich scandium tetraalkynyl species can be recovered and reused, constituting the first example of a recyclable catalyst system for the hydroalkynylation of internal alkynes.
Collapse
Affiliation(s)
- Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Tenggang Jiao
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300072, China
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhou Sun
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Hu J, Tan X, Li Y, Luo L, Wang X, Cao D, Luo G. Theoretical Insights into Rare-Earth-Catalyst-Controlled Diastereo- and Enantioselective [3 + 2] Annulation of Aromatic Aldimines with Styrenes. Inorg Chem 2025; 64:3120-3128. [PMID: 39907012 DOI: 10.1021/acs.inorgchem.4c05543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Rare-earth-catalyzed annulation reactions using alkenes via C-H activation offer an atom-efficient approach to constructing cyclic compounds. However, the mechanisms underlying these reactions remain poorly understood, limiting the rational design of related catalytic systems. Recently, Hou and Cong reported an unprecedented example of rare-earth-catalyst-controlled diastereodivergent asymmetric [3 + 2] annulation of aromatic aldimines with alkenes. To elucidate the mechanisms and the origins of diastereo- and enantioselectivity, density functional theory calculations were performed. The results revealed that the styrene insertion step determines the stereoselectivity. Styrene insertion follows a similar metal-styrene interaction pattern across different catalysts. Specifically, during cis-insertion, styrene interacts strongly with the metal center, exhibiting significant Sc···Ph interactions, whereas such interactions are absent during trans-insertion. Thus, when the catalyst is employed with a small ligand, stereoselectivity is primarily governed by electronic factors, favoring the cis-insertion mode. In contrast, for the more sterically hindered catalyst, the Sc···Ph interactions in cis-insertion are insufficient to overcome the steric effects, leading to a preference for the trans-insertion mode, which minimizes steric hindrance. These findings offer deeper insights into the origins of catalyst-controlled diastereo- and enantioselectivity and will also contribute to the rational design of stereospecific annulation reactions in rare-earth catalysis.
Collapse
Affiliation(s)
- Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xinyu Tan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lun Luo
- School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xintong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Deyue Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
7
|
Mishra A, Hu J, Cong X, Zhuo Q, Nishiura M, Luo G, Hou Z. Enantioselective [3+2] Annulation of Aldimines with Alkynes by Scandium-Catalyzed C-H Activation. Angew Chem Int Ed Engl 2025; 64:e202419567. [PMID: 39746851 DOI: 10.1002/anie.202419567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The enantioselective [3+2] annulation of readily accessible aldimines with alkynes via C-H activation is, in principle, a straightforward and atom-efficient route for synthesizing chiral 1-aminoindenes, which are important components in a wide array of natural products, bioactive molecules, and functional materials. However, such asymmetric transformation has remained undeveloped to date due to the lack of suitable chiral catalysts. Here, we report for the first time the enantioselective [3+2] annulation of aldimines with alkynes via C-H activation using chiral half-sandwich scandium catalysts. This protocol enabled the synthesis of diverse multi-substituted chiral 1-aminoindene derivatives with 100 % atom-efficiency, broad substrate scope, and high regio- and enantioselectivity. Density functional theory (DFT) analyses have revealed that a noncovalent C-H⋅⋅⋅π interaction between a tert-Bu substituent in the chiral cyclopentadienyl (Cp) ligand and the phenyl ring of an aromatic aldimine substrate played an important role in achieving a high level of enantioselectivity. This work not only offers an efficient and selective route for synthesizing a new family of chiral 1-aminoindene derivatives but also offers unprecedented insights into enantioselectivity control in chiral Cp-ligated metal catalysts.
Collapse
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuefeng Cong
- Institute of Molecular Plus, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Qingde Zhuo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Wang H, Li JF, Xu M, Zhou QL, Xu W, Ye M. Enantioselective Construction of Oxindoles Bearing a Quaternary Carbon via Ni-Al Bimetal-Catalyzed Formyl C-H Alkylation. Angew Chem Int Ed Engl 2025; 64:e202413652. [PMID: 39323376 DOI: 10.1002/anie.202413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Enantioselective transition metal-catalyzed C-H alkylation emerges as one of the most atom- and step-economical routes to chiral quaternary carbons, while big challenges still remain with acyl C-H alkylations. Herein, we use a Ni-Al bimetallic catalyst to facilitate a highly regioselective and highly enantioselective C-H alkylation of formamides with alkenes, constructing various oxindoles bearing a chiral quaternary carbon in up to 94 % yield and up to 95 % ee.
Collapse
Affiliation(s)
- Haorui Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jiang-Fei Li
- School of Pharmacy, Wannan Medical College, Anhui, 241002, China
| | - Mengying Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Liu P, Geng Y, Zou D, Wu Y, Wu Y. Silver-mediated radical cascade trifluoromethylthiolation/cyclization of benzimidazole derivatives with AgSCF 3. Org Biomol Chem 2024; 22:9361-9365. [PMID: 39494691 DOI: 10.1039/d4ob01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
A silver-mediated cascade trifluoromethylthiolation/cyclization of unactivated alkenes has been investigated. This strategy employs AgSCF3 as the trifluoromethylthiolating reagent to obtain a variety of useful trifluoromethylthiolated tricyclic imidazol derivatives in reasonable yields. Preliminary mechanistic studies indicate that the present reaction takes place via a radical process. This method is distinguished by its atom economy, wide functional group compatibility, operational simplicity and product diversity.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 451460, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
- TYK Medicines, Inc. Huzhou, 313000, People's Republic of China.
- Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ, 08901, USA
| |
Collapse
|
10
|
Lou SJ, Wang P, Wen X, Mishra A, Cong X, Zhuo Q, An K, Nishiura M, Luo Y, Hou Z. ( Z)-Selective Isomerization of 1,1-Disubstituted Alkenes by Scandium-Catalyzed Allylic C-H Activation. J Am Chem Soc 2024; 146:26766-26776. [PMID: 39303300 DOI: 10.1021/jacs.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isomerization of 1,1-disubstituted alkenes through 1,3-hydrogen shift is an atom-efficient route for synthesizing trisubstituted alkenes, which are important moieties in many natural products, pharmaceuticals, and organic materials. However, this reaction often encounters regio- and stereoselectivity challenges, typically yielding E/Z-mixtures of the alkene products or thermodynamically favored (E)-alkenes. Herein, we report the (Z)-selective isomerization of 1,1-disubstituted alkenes to trisubstituted (Z)-alkenes via the regio- and stereospecific activation of an allylic C-H bond. The key to the success of this unprecedented transformation is the use of a sterically demanding half-sandwich scandium catalyst in combination with a bulky quinoline compound, 2-tert-butylquinoline. Deuterium-labeling experiments and density functional theory (DFT) calculations have revealed that 2-tert-butylquinoline not only facilitates the C═C bond transposition through hydrogen shuttling but also governs the regio- and stereoselectivity due to the steric hindrance of the tert-butyl group. This protocol enables the synthesis of diverse (Z)-configured acyclic trisubstituted alkenes and endocyclic trisubstituted alkenes from readily accessible 1,1-disubstituted alkenes. It offers an efficient and selective route for preparing a new family of synthetically challenging (Z)-trisubstituted alkenes with broad substrate scope, 100% atom efficiency, high regio- and stereoselectivity, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Rezaei E, Shahedi M, Habibi Z. Biocatalytic Synthesis of Nitrile-Bearing All-Carbon Quaternary Stereocenters. J Org Chem 2024; 89:10562-10571. [PMID: 39051740 DOI: 10.1021/acs.joc.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The synthesis of all-carbon quaternary stereocenters containing nitriles is a very important and challenging subject in organic chemistry. We used a biocatalytic approach under mild conditions to obtain new derivatives of these scaffolds by oxidation of catechols by Myceliophthora thermophila laccase (Novozym 51003) to afford o-quinones and 1,4-addition of a series of carbon nucleophiles containing tertiary alkyle nitriles to these intermediates. Using this approach, α-cyano carbonyls bearing a quaternary stereocenter were also prepared. Finally, the yields for the prepared compounds were 72-94%.
Collapse
Affiliation(s)
- Elaheh Rezaei
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
12
|
Lin SN, Deng Y, Zhong H, Mao LL, Ji CB, Zhu XH, Zhang X, Yang BM. Visible Light-Induced Radical Cascade Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF 2H-Substituted Polycyclic Imidazoles. ACS OMEGA 2024; 9:28129-28143. [PMID: 38973879 PMCID: PMC11223139 DOI: 10.1021/acsomega.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
An efficient and mild protocol for the visible light-induced radical cascade difluoromethylation/cyclization of imidazoles with unactivated alkenes using easily accessible and bench-stable difluoromethyltriphenylphosphonium bromide as the precursor of the -CF2H group has been developed to afford CF2H-substituted polycyclic imidazoles in moderate to good yields. This strategy, along with the construction of Csp3-CF2H/C-C bonds, is distinguished by mild conditions, no requirement of additives, simple operation, and wide substrate scope. In addition, the mechanistic experiments have indicated that the difluoromethyl radical pathway is essential for the methodology.
Collapse
Affiliation(s)
- Sheng-Nan Lin
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Yuanyuan Deng
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Hanxun Zhong
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Liu-Liang Mao
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Cong-Bin Ji
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Xiaolan Zhang
- College
of Chemistry and Environment Science, Shangrao
Normal University, Shangrao 334001, China
| | - Bin-Miao Yang
- Joint
School of National University of Singapore and Tianjin University, Fuzhou 350207, China
| |
Collapse
|
13
|
Das D, Pingoliya RK, Ghorai P. A One-Pot Cascade Strategy toward Organocatalytic Enantioselective Construction of Fused Benzimidazoles. Org Lett 2024; 26:4502-4507. [PMID: 38767405 DOI: 10.1021/acs.orglett.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we describe an asymmetric assembly of ortho-aromatic diamines and formyl tethered Michael acceptors forming chiral fused benzimidazoles. A cinchona-alkaloid-derived bifunctional squaramide catalyst enables the methodology through on-site dihydrobenzimidazole formation followed by an aza-Michael addition/oxidation cascade. This protocol stands out for its excellent catalytic efficiency over the background reaction and its mild conditions, making it more practical. Various Michael acceptors, including enones, ester, and thioester, were successful substrates in this study. Additionally, this methodology has demonstrated scalability and successfully showcased postsynthetic transformations.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| | - Rahul Kumar Pingoliya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| |
Collapse
|
14
|
Cong X, Hao N, Mishra A, Zhuo Q, An K, Nishiura M, Hou Z. Regio- and Diastereoselective Annulation of α,β-Unsaturated Aldimines with Alkenes via Allylic C(sp 3)-H Activation by Rare-Earth Catalysts. J Am Chem Soc 2024; 146:10187-10198. [PMID: 38545960 DOI: 10.1021/jacs.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The [3 + 2] or [4 + 2] annulation of α,β-unsaturated aldimines with alkenes via β'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,β-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (β'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of β-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Cong X, Zhuo Q, Hao N, Mishra A, Nishiura M, Hou Z. Divergent Synthesis of Multi-Substituted Aminotetralins via [4+2] Annulation of Aldimines with Alkenes by Rare-Earth-Catalyzed Benzylic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202318203. [PMID: 38226440 DOI: 10.1002/anie.202318203] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The search for efficient and selective methods for the divergent synthesis of multi-substituted aminotetralins is of much interest and importance. We report herein for the first time the diastereoselective [4+2] annulation of 2-methyl aromatic aldimines with alkenes via benzylic C(sp3 )-H activation by half-sandwich rare-earth catalysts, which constitutes an efficient route for the divergent synthesis of both trans and cis diastereoisomers of multi-substituted 1-aminotetralin derivatives from readily accessible aldimines and alkenes. The use of a scandium catalyst bearing a sterically demanding cyclopentadienyl ligand such as C5 Me4 SiMe3 or C5 Me5 exclusively afforded the trans-selective annulation products in the reaction of aldimines with styrenes and aliphatic alkenes. In contrast, the analogous yttrium catalyst, whose metal ion size is larger than that of scandium, yielded the cis-selective annulation products. This protocol features 100 % atom-efficiency, excellent diastereoselectivity, broad substrate scope, and good functional group compatibility. The reaction mechanisms have been elucidated by kinetic isotope effect (KIE) experiments and the isolation and transformations of some key reaction intermediates.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Lin X, An K, Zhuo Q, Nishiura M, Cong X, Hou Z. Diastereo- and Enantioselective Hydrophosphination of Cyclopropenes under Lanthanocene Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308488. [PMID: 37405669 DOI: 10.1002/anie.202308488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
The asymmetric hydrophosphination of cyclopropenes with phosphines is of much interest and importance, but has remained hardly explored to date probably because of the lack of suitable catalysts. We report here the diastereo- and enantioselective hydrophosphination of 3,3-disubstituted cyclopropenes with phosphines by a chiral lanthanocene catalyst bearing the C2 -symmetric 5,6-dioxy-4,7-trans-dialkyl-substituted tetrahydroindenyl ligands. This protocol offers a selective and efficient route for the synthesis of a new family of chiral phosphinocyclopropane derivatives, featuring 100 % atom efficiency, good diastereo- and enantioselectivity, broad substrate scope, and no need for a directing group.
Collapse
Affiliation(s)
- Xiaobin Lin
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
17
|
Guo D, Rajeshkumar T, Zhu S, Yuan Q, Hong D, Zhou S, Zhu X, Maron L, Wang S. Aryl C-H bond functionalization with diphenyldiazomethane induced by rare-earth metal alkyl complexes. Dalton Trans 2023; 52:11315-11324. [PMID: 37530174 DOI: 10.1039/d3dt01714a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The first examples of regioselective aryl ortho-C-H functionalization with diphenyldiazomethane for the construction of Caryl-Nhydrazinato bonds were accomplished via the activation of C-H bonds and the subsequent reaction of diphenyldiazomethane with the RE-Caryl bond. The reactions of rare-earth metal monoalkyl complexes LRE(CH2SiMe3)(THF)2 (L = 2,5-[(2-pyrrolyl)CPh2]2(N-Me-pyrrole)) supported by a neutral N-methylpyrrole anchored dipyrrolyl ligand with 2 equiv. of Ph2CN2 gave irreversibly unprecedented hydrazonato-functionalized imino rare-earth metal complexes LRE(Ph2CNNC6H4-(o-CNHPh) (RE = Y (2a), Lu (2a')) in good yields involving a rather complex process including the interaction of a diazo unit with a RE-Calkyl bond, a β-H elimination, a N-N cleavage, 1,4-hydrogen transfer and the subsequent C-N coupling with another diphenyldiazomethane. More important is that regioselective aryl C-H bond functionalization with diphenyldiazomethane to construct the Caryl-Nhydrazinato bonds can be easily achieved by three-component reactions of rare-earth metal monoalkyl complexes, a wide range of substituted imines (including aldimines, ketimines or analogous 2-phenylpyridine) and diphenyldiazomethane, affording various hydrazonato-functionalized phenyl, thienyl imino or pyridyl rare-earth metal complexes 2b-2j at room temperature. A further study indicated that the substituents on the phenyl ring have a great effect on the reaction pathway and governed the Caryl-Nhydrazinato bond construction. Moreover, the experimental studies show that the formation of the Caryl-Nhydrazinato bonds is thermodynamically facile, which could be realized at room temperature easily.
Collapse
Affiliation(s)
- Dianjun Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shan Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
18
|
Mishra A, Cong X, Nishiura M, Hou Z. Enantioselective Synthesis of 1-Aminoindanes via [3 + 2] Annulation of Aldimines with Alkenes by Scandium-Catalyzed C-H Activation. J Am Chem Soc 2023; 145:17468-17477. [PMID: 37504799 DOI: 10.1021/jacs.3c06482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Multisubstituted chiral 1-aminoindanes are important components in many pharmaceuticals and bioactive molecules. Therefore, the development of efficient and selective methods for the synthesis of chiral 1-aminoindanes is of great interest and importance. In principle, the asymmetric [3 + 2] annulation of aldimines with alkenes through C-H activation is the most atom-efficient and straightforward route for the construction of chiral 1-aminoindanes, but such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. Herein, we report for the first time the enantioselective [3 + 2] annulation of a wide range of aromatic aldimines and alkenes via ortho-C(sp2)-H activation by chiral half-sandwich scandium catalysts, which provides a straightforward route for the synthesis of multisubstituted chiral 1-aminoindanes. This protocol features 100% atom-efficiency, broad functional group compatibility, and high regio-, diastereo-, and enantioselectivity (up to >19:1 dr and 99:1 er). Remarkably, by fine-tuning the sterics of the chiral ligand around the catalyst metal center, the diastereodivergent asymmetric [3 + 2] annulation of aldimines and styrenes has been achieved with a high level of diastereo- and enantioselectivity, offering an efficient method for the synthesis of both the trans and cis diastereomers of a novel class of chiral 1-aminoindane derivatives containing two contiguous stereocenters from the same set of starting materials. Moreover, the asymmetric [3 + 2] annulation of aldimines with aliphatic α-olefins, norbornene, and 1,3-dienes has also been achieved.
Collapse
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Zhu X, Mi R, Yin J, Wang F, Li X. Rhodium-catalyzed atroposelective access to trisubstituted olefins via C-H bond olefination of diverse arenes. Chem Sci 2023; 14:7999-8005. [PMID: 37502336 PMCID: PMC10370552 DOI: 10.1039/d3sc02714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
The atroposelective synthesis of axially chiral acyclic olefins remains a daunting challenge due to their relatively lower racemization barriers, especially for trisubstituted ones. In this work, atroposelective C-H olefination has been realized for synthesis of open-chain trisubstituted olefins via C-H activation of two classes of (hetero)arenes in the coupling with sterically hindered alkynes. The employment of phenyl N-methoxycarbamates as arene reagents afforded phenol-tethered olefins, with the carbamate being a traceless directing group. The olefination of N-methoxy-2-indolylcarboxamides afforded the corresponding chiral olefin by circumventing the redox-neutral [4 + 2] annulation. The reactions proceeded with excellent Z/E selectivity, chemoselectivity, regioselectivity, and enantioselectivity in both hydroarylation systems.
Collapse
Affiliation(s)
- Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Ruijie Mi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
20
|
Ni C, Pan S, Yuan C, Qin S. Synthesis of 1,2-Fused Benzimidazoles by Amine-Initiated [3 + 3] Annulations of β'-Acetoxy Allenoates with 1C,3N-Bisnucleophiles. J Org Chem 2023. [PMID: 37339365 DOI: 10.1021/acs.joc.3c00679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The amine-catalyzed [3 + 3] annulations of β'-acetoxy allenoates with 1C,3N-bisnucleophiles have been established. Under the optimal reaction conditions, this operationally simple synthetic process works well with a wide substrate scope, delivering novel 1,2-fused benzimidazole derivatives in moderate to good yields. In addition, preliminary attempts on the asymmetric version of this reaction have been explored by using cinchona alkaloid-based tertiary amines.
Collapse
Affiliation(s)
- Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Shiyu Pan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Chen Yuan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Shuya Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
21
|
Yan SB, Wang R, Li ZG, Li AN, Wang C, Duan WL. Copper-catalyzed asymmetric C(sp 2)-H arylation for the synthesis of P- and axially chiral phosphorus compounds. Nat Commun 2023; 14:2264. [PMID: 37081007 PMCID: PMC10119316 DOI: 10.1038/s41467-023-37987-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Transition metal-catalyzed C-H bond functionalization is an important method in organic synthesis, but the development of methods that are lower cost and have a less environmental impact is desirable. Here, a Cu-catalyzed asymmetric C(sp2)-H arylation is reported. With diaryliodonium salts as arylating reagents, a range of ortho-arylated P-chiral phosphonic diamides were obtained in moderate to excellent yields with high enantioselectivities (up to 92% ee). Meanwhile, enantioselective C-3 arylation of diarylphosphine oxide indoles was also realized under similar conditions to construct axial chirality.
Collapse
Affiliation(s)
- Shao-Bai Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Zha-Gen Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - An-Na Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, 710119, Xi'an, China.
| |
Collapse
|
22
|
Lysenko V, Portiankin A, Shvydenko T, Shvydenko K, Shishkina S, Kostyuk A. Synthesis and functionalization of 6,7-dihydro-5H-pyrrolo[1,2-c]imidazole. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2188221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Viacheslav Lysenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anton Portiankin
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kostiantyn Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svitlana Shishkina
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
23
|
Shahedi M, Omidi N, Habibi Z, Yousefi M, Brask J, Notash B, Mohammadi M. Biocatalytic stereoselective synthesis of pyrrolidine-2,3-diones containing all-carbon quaternary stereocenters. Org Biomol Chem 2023; 21:2742-2747. [PMID: 36916669 DOI: 10.1039/d2ob02294j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Highly functionalized pyrrolidine-2,3-diones can be synthesized efficiently and stereoselectively under mild conditions using a biocatalytic approach. The reaction led to the formation of new all-carbon quaternary stereocenters from Myceliophthora thermophila laccase (Novozym 51003) catalyzed oxidation of catechols to ortho-quinones and subsequent 1,4-addition with 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones. The reaction was conducted with various substituents on both reactants, resulting in 13 products in moderate to good yields (42-91%). The same 15 reactions were also tested with K3Fe(CN)6 as a catalyst, but here only one reaction resulted in a product (60% yield).
Collapse
Affiliation(s)
- Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Niloofar Omidi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Copenhagen, Denmark
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
24
|
Lyubov DM, Khristolyubov DO, Cherkasov AV, Trifonov AA. Sc and Y Heteroalkyl and Alkyl-Hydrido Complexes Containing Diphenylmethanide Ligands [2,2′-(4-MeC 6H 3NMe 2) 2CH] −. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Dmitry O. Khristolyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334 Moscow, GSP-1, Russia
| |
Collapse
|
25
|
Cong X, Huang L, Hou Z. C–H functionalization with alkenes, allenes, and alkynes by half-sandwich rare-earth catalysts. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
26
|
Liu ZJ, Li JF, Zhang FP, Xu XT, Ye M. Catalyst-Controlled Nickel-Catalyzed Intramolecular endo-Selective C-H Cyclization of Benzimidazoles with Alkenes. Org Lett 2023; 25:353-357. [PMID: 36606754 DOI: 10.1021/acs.orglett.2c04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Compared with the widely explored exo-selective C-H cyclization, transition metal-catalyzed endo-selective C-H cyclization of benzimidazoles with alkenes has been a formidable challenge. Previous efforts mainly rely on substrate-controlled methods, rendering the product complexity restricted. Herein we report a catalyst-controlled method to facilitate endo-cyclization, in which a bulky N-heterocyclic carbene ligand and tBuOK base-enabled Ni-Al bimetallic catalyst prove critical to the endo selectivity.
Collapse
Affiliation(s)
- Zi-Jian Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng-Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Mengchun Ye
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Taranenko GR, Selikhov AN, Nelyubina YV, Trifonov AA. Helicate tris(aryl)carbinolates bearing pendant NR2 donors – a new family of supporting ligands for the synthesis of Sc3+ alkyl complexes. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Wu P, Cao F, Zhou Y, Xue Z, Zhang N, Shi L, Luo G. Substrate Facilitating Roles in Rare-Earth-Catalyzed C-H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorg Chem 2022; 61:17330-17341. [PMID: 36259978 DOI: 10.1021/acs.inorgchem.2c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.
Collapse
Affiliation(s)
- Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
29
|
Mishra A, Wu P, Cong X, Nishiura M, Luo G, Hou Z. Exo-Selective Intramolecular C–H Alkylation with 1,1-Disubstituted Alkenes by Rare-Earth Catalysts: Construction of Indanes and Tetralins with an All-Carbon Quaternary Center. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Sun X, Lin EZ, Li BJ. Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides. J Am Chem Soc 2022; 144:17351-17358. [PMID: 36121772 DOI: 10.1021/jacs.2c07477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asymmetric catalysis. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of α-olefins through directed C-H cleavage of enamides. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
32
|
Chen M, Montgomery J. Nickel-Catalyzed Intermolecular Enantioselective Heteroaromatic C–H Alkylation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mo Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
33
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
34
|
Zhou W, Cong X, Nishiura M, Hou Z. Synthesis of allylanilines via scandium-catalysed benzylic C(sp 3)-H alkenylation with alkynes. Chem Commun (Camb) 2022; 58:7257-7260. [PMID: 35666084 DOI: 10.1039/d2cc02489f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ortho-selective benzylic C(sp3)-H alkenylation of 2-methyl tertiary anilines with internal alkynes has been achieved for the first time by using a half-sandwich scandium catalyst. This protocol provides a straightforward route for the synthesis of a new family of 2-allylaniline derivatives, featuring broad substrate scope, 100% atom-efficiency, high yields, and high chemo-, regio-, and stereoselectivity.
Collapse
Affiliation(s)
- Wei Zhou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Zhao H, Luo Z, Yang J, Li B, Han J, Xu L, Lai W, Walsh PJ. Ligand‐Promoted Rh
I
‐Catalyzed C2‐Selective C−H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry 2022; 28:e202200441. [DOI: 10.1002/chem.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
- Department of Chemistry School of Chinese Pharmacy Beijing University of Chinese Medicine Beijing 102488 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Ji Yang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Jiahong Han
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Wenzhen Lai
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
36
|
Xu X, Sun Q, Xu X. Scandium-Catalyzed Benzylic C(sp 3)-H Alkenylation of Tertiary Anilines with Alkynes. Org Lett 2022; 24:3970-3975. [PMID: 35640076 DOI: 10.1021/acs.orglett.2c01329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the chemo- and stereoselective benzylic C(sp3)-H alkenylation of tertiary ortho-methyl anilines with internal alkynes using a simple β-diketiminato scandium catalyst. This protocol offers an efficient method for the synthesis of a new family of tertiary ortho-allylanilines in high yields. The resultant alkenylation products facilely underwent further chemical transformation to other valuable anilines. A cationic scandium benzyl species was isolated from a stoichiometric reaction and confirmed to be the catalytic intermediate.
Collapse
Affiliation(s)
- Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
37
|
Sun Y, Xu S, You F, Shi X. Synthesis and characterization of the titanium catalysts supported by pyrrolide-benzoxazole ligands and their application in ethylene polymerization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022; 61:e202201099. [DOI: 10.1002/anie.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
39
|
Selikhov AN, Cherkasov AV, Lyssenko KA, Trifonov AA. Thermally Stable Cationic Bis(benzhydryl) Complexes of Early Lanthanides (La, Ce, Nd). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
| | - Konstantin A. Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| |
Collapse
|
40
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
41
|
Teng S, Zhou JS. Metal-catalyzed asymmetric heteroarylation of alkenes: diverse activation mechanisms. Chem Soc Rev 2022; 51:1592-1607. [PMID: 35166742 DOI: 10.1039/d1cs00426c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review summarizes the state-of-the-art in transition metal-catalyzed asymmetric alkylation of heteroarenes using alkenes (covering literature from 2000 to late 2021). Based on elementary reactions on metals for substrate activation, these reactions are broadly classified in several categories: (A) concerted oxidative addition of heteroaryl C-H bonds on rhodium(I) and iridium(I), (B) ligand-to-ligand hydrogen transfer (LLHT) on low-valent 3d metal complexes of nickel and cobalt, (C) different ways for deprotonation of heteroaryl C-H bonds by late transition metal complexes, especially palladium, including electrophilic aromatic substitution and a related mechanism, base-assisted intramolecular electrophilic substitution, concerted and nonconcerted metalation deprotonation, (D) σ-bond metathesis by d0 early transition metal complexes, (E) electrophilic activation of olefins by Pd(II), Pt(II) and Au(I), and (F) metal hydride insertion of aryl olefins and dienes. The demand to achieve enantiocontrol in the heteroarylation reactions has also driven innovation in chiral ancillary ligands, exemplified by extremely bulky, chiral N-heterocyclic carbenes for nickel catalysts, bulky monodentate oxazolines for Wacker-type reactions and chiral cyclopentadienyl ligands for half-sandwich complexes of scandium.
Collapse
Affiliation(s)
- Shenghan Teng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
42
|
Cong X, Zhuo Q, Hao N, Mo Z, Zhan G, Nishiura M, Hou Z. Regio‐ and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandium‐Catalyzed β‐C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Na Hao
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Zhenbo Mo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Gu Zhan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
43
|
Kumar J, Ahmed A, Kumar S, Raheem S, Rizvi MA, Shah BA. Visible light-mediated synthesis of α-alkoxy/hydroxy diarylacetaldehydes from terminal alkynes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-mediated approach enabling the use of alcohols as nucleophiles in a one-step synthesis of α-alkoxy/hydroxy diarylacetaldehydes is reported.
Collapse
Affiliation(s)
- Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ajaz Ahmed
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sourav Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
44
|
Seth K. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01859k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review presents rare-earth metal-catalyzed C(sp2/sp3)–H functionalization accessing C–C/C–heteroatom bonds and olefin (co)polymerization, highlighting substrate scope, mechanistic realization, and origin of site-, enantio-/diastereo-selectivity.
Collapse
Affiliation(s)
- Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Guwahati, Sila Katamur, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
45
|
Liu XL, Jiang LB, Luo MP, Ren Z, Wang SG. Recent advances in catalytic enantioselective direct C–H bond functionalization of electron-deficient N-containing heteroarenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01223a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Catalytic enantioselective direct C–H bond functionalization of electron-deficient N-containing heteroarenes represents one of the most straightforward and powerful protocols to construct diverse enantioenriched highly functionalized N-heteroarenes.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Luo-Bin Jiang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Mu-Peng Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| | - Zhi Ren
- College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Shenzhen, China
| | - Shou-Guo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China
| |
Collapse
|
46
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
47
|
Cong X, Zhuo Q, Hao N, Mo Z, Zhan G, Nishiura M, Hou Z. Regio- and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandium-Catalyzed β-C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2021; 61:e202115996. [PMID: 34913239 DOI: 10.1002/anie.202115996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Here we report for the first time the regio- and diastereoselective [3+2] annulation of a wide range of aliphatic aldimines with alkenes via the activation of an unactivated β-C(sp3 )-H bond by half-sandwich scandium catalysts. This protocol offers a straightforward and atom-efficient route for the synthesis of a new family of multi-substituted aminocyclopentane derivatives from easily accessible aliphatic aldimines and alkenes. The annulation of aldimines with styrenes exclusively afforded the 5-aryl-trans-substituted 1-aminocyclopentane derivatives with excellent diastereoselectivity through the 2,1-insertion of a styrene unit. The annulation of aldimines with aliphatic alkenes selectively gave the 4-alkyl-trans-substituted 1-aminocyclopentane products in a 1,2-insertion fashion. A catalytic amount of an appropriate amine such as adamantylamine (AdNH2 ) or dibenzylamine (Bn2 NH) showed significant effects on the catalyst activity and stereoselectivity.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhenbo Mo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Gu Zhan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
48
|
Lou SJ, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. Modular Access to Spiro-dihydroquinolines via Scandium-Catalyzed Dearomative Annulation of Quinolines with Alkynes. J Am Chem Soc 2021; 143:20462-20471. [PMID: 34813697 DOI: 10.1021/jacs.1c10743] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic enantioselective construction of three-dimensional molecular architectures from planar aromatics such as quinolines is of great interest and importance from the viewpoint of both organic synthesis and drug discovery, but there still exist many challenges. Here, we report the scandium-catalyzed asymmetric dearomative spiro-annulation of quinolines with alkynes. This protocol offers an efficient and selective route for the synthesis of spiro-dihydroquinoline derivatives containing a quaternary carbon stereocenter with an unprotected N-H group from readily accessible quinolines and diverse alkynes, featuring high yields, high enantioselectivity, 100% atom-efficiency, and broad substrate scope. Experimental and density functional theory studies revealed that the reaction proceeded through the C-H activation of the 2-aryl substituent in a quinoline substrate by a scandium alkyl (or amido) species followed by alkyne insertion into the Sc-aryl bond and the subsequent dearomative 1,2-addition of the resulting scandium alkenyl species to the C═N unit in the quinoline moiety. This work opens a new avenue for the dearomatization of quinolines, leading to efficient and selective construction of spiro molecular architectures that were previously difficult to access by other means.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shigeru Yamaguchi
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
49
|
Liu Y, Zhang N, Xu Y, Chen Y. Visible-Light-Induced Radical Cascade Reaction of 1-Allyl-2-ethynylbenzoimidazoles with Thiosulfonates to Assemble Thiosulfonylated Pyrrolo[1,2- a]benzimidazoles. J Org Chem 2021; 86:16882-16891. [PMID: 34739244 DOI: 10.1021/acs.joc.1c02082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced radical domino reaction of 1-allyl-2-ethynylbenzoimidazoles with thiosulfonates was developed, which generated the thiosulfonylated pyrrolo[1,2-a]benzimidazoles in moderate to good yields. This reaction proceeded under transition-metal-free conditions with good functional group tolerance and high regioselectivity. The possible pathway involved thiosulfonates were activated through the energy transfer route promoted by photocatalysis.
Collapse
Affiliation(s)
- Yan Liu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Niuniu Zhang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| |
Collapse
|
50
|
Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C-H Activation. J Am Chem Soc 2021; 143:19112-19120. [PMID: 34747617 DOI: 10.1021/jacs.1c08562] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|