1
|
Xie R, Shi Z, Wang L. Coupled-trajectory surface hopping with sign consistency. J Chem Phys 2025; 162:164103. [PMID: 40260798 DOI: 10.1063/5.0264049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
The framework of exact factorization (XF) has inspired a series of trajectory-based nonadiabatic dynamics methods by introducing different approximations. Recently, the coupled-trajectory surface hopping (CTSH) method has been proposed to combine the key advantages of the coupled-trajectory mixed quantum-classical method based on XF and the fewest switches surface hopping. We here present a novel variant of CTSH, namely, sign-consistent CTSH (SC-CTSH), which considers proper trajectory clustering to reconstruct the nuclear density distribution and the consistency between wave function and active states to introduce decoherence. Using the exact quantum solutions as references, the high performance of SC-CTSH is benchmarked in the widely studied scattering models and compared with other related XF-based methods. Due to the incorporation of new trajectory clustering and sign consistency algorithms, SC-CTSH obtains more accurate quantum momentum and decoherence during the nonadiabatic dynamics, which makes the combination of XF and surface hopping more consistent and reliable. This study further highlights the significance of internal consistency between wave function and active states, which is important in the further development of mixed quantum-classical dynamics methods.
Collapse
Affiliation(s)
- Rixin Xie
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Meling A, Yamin T, Kandratsenka A, Sharoni A, Schäfer T, Rahinov I. Vibrational Energy Transfer upon the Collision of NO with VO 2 Thin Films across the Insulator-to-Metal Transition. J Phys Chem A 2025; 129:1993-2005. [PMID: 39960448 DOI: 10.1021/acs.jpca.4c08096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The mechanism and consequently the magnitude of vibrational relaxation of molecules on surfaces differ significantly between insulators and metals, making the vibrational energy transfer at the NO/metal versus the NO/insulator interface a canonical example in the field. We report the influence of the surface temperature, the initial vibrational state, and the incident translational energy on the vibrational relaxation probability of vibrationally excited NO(vI = 3 and vI = 11) undergoing a direct scattering from thin films of vanadium dioxide (VO2) across the Mott transition at 68 °C. At that temperature, thin-film VO2 transforms from the insulating to the metallic phase, exhibiting ∼4 orders of magnitude drop in resistivity. As VO2 undergoes the Mott transition, at T > 68 °C, we observe a surprisingly small, yet measurable enhancement in the relaxation probability of NO(vI = 3 and vI = 11) due to the metallic phase of VO2. The magnitudes of vibrational relaxation for NO(vI = 3)/VO2 and NO(vI = 11)/VO2 are ∼2 and ∼20%, respectively─considerably lower than expected, based on the S-shaped dependence of vibrational relaxation probability on the asymptotic affinity level, observed for diatomic molecules on coinage metal surfaces. By analyzing the distinct dynamic features of NO scattering, including the dependence of vibrational relaxation on the initial vibrational state and on the incidence energy, as well as the relationship between rotational excitation and vibrational inelasticity, we explain the low magnitude of vibrational relaxation of NO on VO2 using the electron transfer model.
Collapse
Affiliation(s)
- Artur Meling
- The Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, Göttingen 37077, Germany
| | - Tony Yamin
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen 37077, Germany
| | - Amos Sharoni
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tim Schäfer
- The Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, Göttingen 37077, Germany
| | - Igor Rahinov
- Department of Natural Sciences, The Open University of Israel, Raanana 4353701, Israel
| |
Collapse
|
3
|
Preston RJ, Ke Y, Rudge SL, Hertl N, Borrelli R, Maurer RJ, Thoss M. Nonadiabatic Quantum Dynamics of Molecules Scattering from Metal Surfaces. J Chem Theory Comput 2025; 21:1054-1063. [PMID: 39873222 PMCID: PMC11823411 DOI: 10.1021/acs.jctc.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Nonadiabatic coupling between electrons and molecular motion at metal surfaces leads to energy dissipation and dynamic steering effects during chemical surface dynamics. We present a theoretical approach to the scattering of molecules from metal surfaces that incorporates all nonadiabatic and quantum nuclear effects due to the coupling of the molecular degrees of freedom to the electrons in the metal. This is achieved with the hierarchical equations of motion (HEOM) approach, combined with a matrix product state representation in twin space. The method is applied to the scattering of nitric oxide from Au(111), for which strongly nonadiabatic energy loss during scattering has been experimentally observed, thus presenting a significant theoretical challenge. Since the HEOM approach treats the molecule-surface coupling exactly, it captures the interplay between nonadiabatic and quantum nuclear effects. Finally, the data obtained by the HEOM approach are used as a rigorous benchmark to assess various mixed quantum-classical methods, from which we derive insights into the mechanisms of energy dissipation and the suitable working regimes of each method.
Collapse
Affiliation(s)
- Riley J. Preston
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Yaling Ke
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Samuel L. Rudge
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Nils Hertl
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | | | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Michael Thoss
- Institute
of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Kroes GJ, Meyer J. Best-of-both-worlds computational approaches to difficult-to-model dissociation reactions on metal surfaces. Chem Sci 2025; 16:480-506. [PMID: 39640030 PMCID: PMC11616778 DOI: 10.1039/d4sc06004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The accurate modeling of dissociative chemisorption of molecules on metal surfaces presents an exciting scientific challenge to theorists, and is practically relevant to modeling heterogeneously catalyzed reactive processes in computational catalysis. The first important scientific challenge in the field is that accurate barriers for dissociative chemisorption are not yet available from first principles methods. For systems that are not prone to charge transfer (for which the difference between the work function of the surface and the electron affinity of the molecule is larger than 7 eV) this problem can be circumvented: chemically accurate barrier heights can be extracted with a semi-empirical version of density functional theory (DFT). However, a second important challenge is posed by systems that are prone to (full or partial) electron transfer from the surface to the molecule. For these systems the Born-Oppenheimer approximation breaks down, and currently no method of established accuracy exists for modeling the resulting effect of non-adiabatic energy dissipation on the dissociative chemisorption reaction. Because two problems exist for this class of reactions, a semi-empirical approach to computing barrier heights, which would demand that computed and experimental dissociative chemisorption probabilities match, is unlikely to work. This Perspective presents a vision on how these two problems may be solved. We suggest an approach in which parameterized density functionals are used as in the previous semi-empirical approach to DFT, but in which the parameters are based on calculations with first principles electronic structure methods. We also suggest that the diffusion Monte-Carlo (DMC) and the random phase approximation (RPA) probably are the best two first principles electronic structure methods to pursue in the framework of the approach that we call first-principles based DFT (FPB-DFT) - providing DMC and the RPA with a steppingstone towards benchmarking and future applications in computational catalysis. Probably the FPB density functional is best based on screened hybrid exchange in combination with non-local van der Waals correlation. We also propose a new electronic friction method called scattering potential friction (SPF) that could combine the advantages and avoid the disadvantages of the two main existing electronic friction approaches for describing non-adiabatic effects: by extracting an electronic scattering potential from a DFT calculation for the full molecule-metal surface system, it might be possible to compute friction coefficients from scattering phase shifts in a computationally convenient and robust fashion. Combining the FPB-DFT and SPF methods may eventually result in barrier heights of chemical accuracy for the difficult-to-model class of systems that are prone to charge transfer. This should also enable the construction of a representative database of barrier heights for dissociative chemisorption on metal surfaces. Such a database would allow testing new density functionals, or, more generally, new electronic structure approaches on a class of reactions that is of huge importance to the chemical industry. Additionally, the difficult-to-model sub-class of systems we focus on is essential to sustainable chemistry and important for a sustainable future. Adding the database envisaged to large databases already existing but mostly addressing gas phase chemistry will enable testing density functionals that have a claim to universality, i.e., to be good for all chemical systems of importance. We also make a suggestion for how to develop such a generally applicable functional, which should have the correct asymptotic dependence of the exchange contribution to the energy in both the gas phase and the metal. Finally we suggest some improvements in the representation of potential energy surfaces and in dynamics methods that would help with the validation of the proposed methods.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
5
|
Box CL, Hertl N, Stark WG, Maurer RJ. Room Temperature Hydrogen Atom Scattering Experiments Are Not a Sufficient Benchmark to Validate Electronic Friction Theory. J Phys Chem Lett 2024; 15:12520-12525. [PMID: 39670682 DOI: 10.1021/acs.jpclett.4c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In the dynamics of atoms and molecules at metal surfaces, electron-hole pair excitations can play a crucial role. In the case of hyperthermal hydrogen atom scattering, they lead to nonadiabatic energy loss and highly inelastic scattering. Molecular dynamics with electronic friction simulation results, based on an isotropic homogeneous electron gas approximation, have previously aligned well with measured kinetic energy loss distributions, indicating that this level of theoretical description is sufficient to describe nonadiabatic effects during scattering. In this study, we demonstrate that friction derived from density functional theory linear response calculations can also describe the experimental energy loss distributions, although agreement is slightly worse than for the simpler isotropic homogeneous electron gas approximation. We show that the apparent agreement of the homogeneous electron gas approximation with experiment arises from a fortuitous cancellation of errors as friction is overestimated close to the surface and the spin transition is neglected. Differences in frictional treatment affect single, double, and multibounce scattering trajectories in distinct ways, altering the shape of low-temperature energy loss distributions. These distinctions are largely absent at room temperature but may be measurable in future low-temperature scattering experiments.
Collapse
Affiliation(s)
- Connor L Box
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Nils Hertl
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Wojciech G Stark
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| |
Collapse
|
6
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Meng G, Gardner J, Hertl N, Dou W, Maurer RJ, Jiang B. First-Principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer. PHYSICAL REVIEW LETTERS 2024; 133:036203. [PMID: 39094165 DOI: 10.1103/physrevlett.133.036203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Accurate description of nonadiabatic dynamics of molecules at metal surfaces involving electron transfer has been a long-standing challenge for theory. Here, we tackle this problem by first constructing high-dimensional neural network diabatic potentials including state crossings determined by constrained density functional theory, then applying mixed quantum-classical surface hopping simulations to evolve coupled electron-nuclear motion. Our approach accurately describes the nonadiabatic effects in CO scattering from Au(111) without empirical parameters and yields results agreeing well with experiments under various conditions for this benchmark system. We find that both adiabatic and nonadiabatic energy loss channels have important contributions to the vibrational relaxation of highly vibrationally excited CO(v_{i}=17), whereas relaxation of low vibrationally excited states of CO(v_{i}=2) is weak and dominated by nonadiabatic energy loss. The presented approach paves the way for accurate first-principles simulations of electron transfer mediated nonadiabatic dynamics at metal surfaces.
Collapse
|
8
|
Rahinov I, Kandratsenka A, Schäfer T, Shirhatti P, Golibrzuch K, Wodtke AM. Vibrational energy transfer in collisions of molecules with metal surfaces. Phys Chem Chem Phys 2024; 26:15090-15114. [PMID: 38757203 PMCID: PMC11135613 DOI: 10.1039/d4cp00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
The Born-Oppenheimer approximation (BOA), which serves as the basis for our understanding of chemical bonding, reactivity and dynamics, is routinely violated for vibrationally inelastic scattering of molecules at metal surfaces. The title-field therefore represents a fascinating challenge to our conventional wisdom calling for new concepts that involve explicit electron dynamics occurring in concert with nuclear motion. Here, we review progress made in this field over the last decade, which has witnessed dramatic advances in experimental methods, thereby providing a much more extensive set of diverse observations than has ever before been available. We first review the experimental methods used in this field and then provide a systematic tour of the vast array of observations that are currently available. We show how these observations - taken together and without reference to computational simulations - lead us to a simple and intuitive picture of BOA failure in molecular dynamics at metal surfaces, one where electron transfer between the molecule and the metal plays a preeminent role. We also review recent progress made in the theory of electron transfer mediated BOA failure in molecule-surface interactions, describing the most important methods and their ability to reproduce experimental observation. Finally, we outline future directions for research and important unanswered questions.
Collapse
Affiliation(s)
- Igor Rahinov
- Department of Natural Sciences, The Open University of Israel, 4353701 Raanana, Israel.
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
| | - Pranav Shirhatti
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Hyderabad 500046, Telangana, India
| | - Kai Golibrzuch
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
| | - Alec M Wodtke
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
- Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
| |
Collapse
|
9
|
Bernard ME, Harrison I. Microcanonical treatment of HCl dissociative chemisorption on Au(111): Reactive dampening through inefficient translational energy coupling and an active surface. J Chem Phys 2024; 160:084702. [PMID: 38391017 DOI: 10.1063/5.0193675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Microcanonical unimolecular rate theory is applied to Shirhatti and Wodtke's recent supersonic molecular beam experiments examining the activated dissociative chemisorption of HCl on Au(111). A precursor mediated microcanonical trapping (PMMT) model (where the surface vibrates and HCl rotations, vibration, and translation directed along the surface normal are treated as active degrees of freedom) gave dissociative sticking coefficient predictions that are several orders of magnitude higher than experimental values but in good accord with prior quantum and molecular dynamics simulations. Density functional theory (DFT) electronic structure calculations using the Perdew-Burke-Ernzerhof (PBE) functional served to fix the vibrational frequencies of the reactive transition state and the threshold energy for dissociation, E0 = 72.9 kJ/mol. To explore the possibilities of varying threshold energy, coupling to phonons, and dynamics, a three-parameter [E0, s, ɛn] dynamically biased (d-) PMMT model was fit to the experiments. A dynamical bias was introduced using an efficiency, ɛn, of normal translational energy to contribute to the active exchangeable energy capable of promoting reactivity. To achieve the low sticking probabilities observed in experiment, severe normal translational energy dampening (ɛn → 0.26) was imposed, leading to a large vibrational efficacy of ηv = εv/εn = 3.85. The optimal threshold energy for dissociation was E0 = 30.88 kJ/mol, some 40 kJ/mol below the PBE-DFT prediction, and the optimal number of Au surface oscillators was s = 1. The d-PMMT modeling indicates that HCl/Au(111) reactivity can be consistent with electronically adiabatic passage across a relatively low and late transition state that dynamically disfavors normal translational energy.
Collapse
Affiliation(s)
- Mark E Bernard
- Department of Chemistry, University of Virgina, Charlottesville, Virginia 22904, USA
| | - Ian Harrison
- Department of Chemistry, University of Virgina, Charlottesville, Virginia 22904, USA
| |
Collapse
|
10
|
Malpathak S, Ananth N. A Linearized Semiclassical Dynamics Study of the Multiquantum Vibrational Relaxation of NO Scattering from a Au(111) Surface. J Phys Chem Lett 2024; 15:794-801. [PMID: 38232133 DOI: 10.1021/acs.jpclett.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The vibrational relaxation of NO molecules scattering from a Au(111) surface has served as the focus of efforts to understand nonadiabatic energy transfer at metal-molecule interfaces. Experimental measurements and previous theoretical efforts suggest that multiquantal NO vibrational energy relaxation occurs via electron-hole pair excitations in the metal. Here, using a linearized semiclassical approach, we accurately predict the vibrational relaxation of NO from the νi = 3 state for different incident translational energies. We also accurately capture the central role of transient electron transfer from the metal to the molecule in mediating the vibrational relaxation process but fall short of quantitatively predicting the full extent of multiquantum relaxation for high incident vibrational excitations (νi = 16).
Collapse
Affiliation(s)
- Shreyas Malpathak
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Liebetrau M, Dorenkamp Y, Bünermann O, Behler J. Hydrogen atom scattering at the Al 2O 3(0001) surface: a combined experimental and theoretical study. Phys Chem Chem Phys 2024; 26:1696-1708. [PMID: 38126723 DOI: 10.1039/d3cp04729f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Investigating atom-surface interactions is the key to an in-depth understanding of chemical processes at interfaces, which are of central importance in many fields - from heterogeneous catalysis to corrosion. In this work, we present a joint experimental and theoretical effort to gain insights into the atomistic details of hydrogen atom scattering at the α-Al2O3(0001) surface. Surprisingly, this system has been hardly studied to date, although hydrogen atoms as well as α-Al2O3 are omnipresent in catalysis as reactive species and support oxide, respectively. We address this system by performing hydrogen atom beam scattering experiments and molecular dynamics (MD) simulations based on a high-dimensional machine learning potential trained to density functional theory data. Using this combination of methods we are able to probe the properties of the multidimensional potential energy surface governing the scattering process. Specifically, we compare the angular distribution and the kinetic energy loss of the scattered atoms obtained in experiment with a large number of MD trajectories, which, moreover, allow to identify the underlying impact sites at the surface.
Collapse
Affiliation(s)
- Martin Liebetrau
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, D-44780 Bochum, Germany
| | - Yvonne Dorenkamp
- Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Oliver Bünermann
- Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstraße 6, D-37077 Göttingen, Germany.
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37007 Göttingen, Germany
- International Center of Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 6, D-37077 Göttingen, Germany
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, D-44780 Bochum, Germany
| |
Collapse
|
12
|
Powell A, Gerrits N, Tchakoua T, Somers MF, Busnengo HF, Meyer J, Kroes GJ, Doblhoff-Dier K. Best-of-Both-Worlds Predictive Approach to Dissociative Chemisorption on Metals. J Phys Chem Lett 2024; 15:307-315. [PMID: 38169287 PMCID: PMC10788952 DOI: 10.1021/acs.jpclett.3c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Predictive capability, accuracy, and affordability are essential features of a theory that is capable of describing dissociative chemisorption on a metal surface. This type of reaction is important for heterogeneous catalysis. Here we present an approach in which we use diffusion Monte Carlo (DMC) to pin the minimum barrier height and construct a density functional that reproduces this value. This predictive approach allows the construction of a potential energy surface at the cost of density functional theory while retaining near DMC accuracy. Scrutinizing effects of energy dissipation and quantum tunneling, dynamics calculations suggest the approach to be of near chemical accuracy, reproducing molecular beam sticking experiments for the showcase H2 + Al(110) system to ∼1.4 kcal/mol.
Collapse
Affiliation(s)
- Andrew
D. Powell
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Theophile Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Mark F. Somers
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Heriberto F. Busnengo
- Instituto
de Física Rosario (IFIR), CONICET-UNR, 2000 Rosario, Argentina
- Facultad
de Ciencias Exatas, Ingeniería y
Agrimensura, UNR, 2000 Rosario, Argentina
| | - Jörg Meyer
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
Wang Y, Dou W. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping. J Chem Phys 2023; 159:094103. [PMID: 37655774 DOI: 10.1063/5.0161292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to solve the FCME. In this study, we map the FCME into a Floquet Fokker-Planck equation in the limit of fast Floquet driving and fast electron motion as compared to nuclear motion. The Fokker-Planck equation is then being solved using Langevin dynamics with explicit friction and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the second fluctuation-dissipation theorem, which further gives rise to heating effects.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
14
|
Gardner J, Habershon S, Maurer RJ. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15257-15270. [PMID: 37583439 PMCID: PMC10424245 DOI: 10.1021/acs.jpcc.3c03591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Mixed quantum-classical (MQC) methods for simulating the dynamics of molecules at metal surfaces have the potential to accurately and efficiently provide mechanistic insight into reactive processes. Here, we introduce simple two-dimensional models for the scattering of diatomic molecules at metal surfaces based on recently published electronic structure data. We apply several MQC methods to investigate their ability to capture how nonadiabatic effects influence molecule-metal energy transfer during the scattering process. Specifically, we compare molecular dynamics with electronic friction, Ehrenfest dynamics, independent electron surface hopping, and the broadened classical master equation approach. In the case of independent electron surface hopping, we implement a simple decoherence correction approach and assess its impact on vibrationally inelastic scattering. Our results show that simple, low-dimensional models can be used to qualitatively capture experimentally observed vibrational energy transfer and provide insight into the relative performance of different MQC schemes. We observe that all approaches predict similar kinetic energy dependence but return different vibrational energy distributions. Finally, by varying the molecule-metal coupling, we can assess the coupling regime in which some MQC methods become unsuitable.
Collapse
Affiliation(s)
- James Gardner
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Li C, Li Y, Jiang B. First-principles surface reaction rates by ring polymer molecular dynamics and neural network potential: role of anharmonicity and lattice motion. Chem Sci 2023; 14:5087-5098. [PMID: 37206404 PMCID: PMC10189860 DOI: 10.1039/d2sc06559b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/05/2023] [Indexed: 08/04/2023] Open
Abstract
Elementary gas-surface processes are essential steps in heterogeneous catalysis. A predictive understanding of catalytic mechanisms remains challenging due largely to difficulties in accurately characterizing the kinetics of such steps. Experimentally, thermal rates for elementary surface reactions can now be measured using a novel velocity imaging technique, providing a stringent testing ground for ab initio rate theories. Here, we propose to combine ring polymer molecular dynamics (RPMD) rate theory with state-of-the-art first-principles-determined neural network potential to calculate surface reaction rates. Taking NO desorption from Pd(111) as an example, we show that the harmonic approximation and the neglect of lattice motion in the commonly-used transition state theory overestimates and underestimates the entropy change during the desorption process, respectively, leading to opposite errors in rate coefficient predictions and artificial error cancellations. Including anharmonicity and lattice motion, our results reveal a generally neglected surface entropy change due to significant local structural change during desorption and obtain the right answer for the right reasons. Although quantum effects are found to be less important in this system, the proposed approach establishes a more reliable theoretical benchmark for accurately predicting the kinetics of elementary gas-surface processes.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University Shanghai 200444 China
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
16
|
Gardner J, Corken D, Janke SM, Habershon S, Maurer RJ. Efficient implementation and performance analysis of the independent electron surface hopping method for dynamics at metal surfaces. J Chem Phys 2023; 158:064101. [PMID: 36792522 DOI: 10.1063/5.0137137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Independent electron surface hopping (IESH) is a computational algorithm for simulating the mixed quantum-classical molecular dynamics of adsorbate atoms and molecules interacting with metal surfaces. It is capable of modeling the nonadiabatic effects of electron-hole pair excitations on molecular dynamics. Here, we present a transparent, reliable, and efficient implementation of IESH, demonstrating its ability to predict scattering and desorption probabilities across a variety of systems, ranging from model Hamiltonians to full dimensional atomistic systems. We further show how the algorithm can be modified to account for the application of an external bias potential, comparing its accuracy to results obtained using the hierarchical quantum master equation. Our results show that IESH is a practical method for modeling coupled electron-nuclear dynamics at metal surfaces, especially for highly energetic scattering events.
Collapse
Affiliation(s)
- James Gardner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Daniel Corken
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Svenja M Janke
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Zhang Y, Lin Q, Jiang B. Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yaolong Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Qidong Lin
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
18
|
Zhang Y, Box CL, Schäfer T, Kandratsenka A, Wodtke AM, Maurer RJ, Jiang B. Stereodynamics of adiabatic and non-adiabatic energy transfer in a molecule surface encounter. Phys Chem Chem Phys 2022; 24:19753-19760. [PMID: 35971747 DOI: 10.1039/d2cp03312g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular energy transfer and reactions at solid surfaces depend on the molecular orientation relative to the surface. While such steric effects have been largely understood in electronically adiabatic processes, the orientation-dependent energy transfer in NO scattering from Au(111) was complicated by electron-mediated nonadiabatic effects, thus lacking a clear interpretation and posing a great challenge for theories. Herein, we investigate the stereodynamics of adiabatic and nonadiabatic energy transfer via molecular dynamics simulations of NO(v = 3) scattering from Au(111) using realistic initial orientation distributions based on accurate neural network fitted adiabatic potential energy surface and electronic friction tensor. Our results reproduce the observed stronger vibrational relaxation for N-first orientation and enhanced rotational rainbow for O-first orientation, and demonstrate how adiabatic anisotropic interactions steer molecules into the more attractive N-first orientation to experience more significant energy transfer. Remaining disagreements with experiment suggest the direction for further developments of nonadiabatic theories for gas-surface scattering.
Collapse
Affiliation(s)
- Yaolong Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Connor L Box
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Alexander Kandratsenka
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
19
|
Litman Y, Pós ES, Box CL, Martinazzo R, Maurer RJ, Rossi M. Dissipative tunneling rates through the incorporation of first-principles electronic friction in instanton rate theory. I. Theory. J Chem Phys 2022; 156:194106. [PMID: 35597633 DOI: 10.1063/5.0088399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactions involving adsorbates on metallic surfaces and impurities in bulk metals are ubiquitous in a wide range of technological applications. The theoretical modeling of such reactions presents a formidable challenge for theory because nuclear quantum effects (NQEs) can play a prominent role and the coupling of the atomic motion with the electrons in the metal gives rise to important non-adiabatic effects (NAEs) that alter atomic dynamics. In this work, we derive a theoretical framework that captures both NQEs and NAEs and, due to its high efficiency, can be applied to first-principles calculations of reaction rates in high-dimensional realistic systems. More specifically, we develop a method that we coin ring polymer instanton with explicit friction (RPI-EF), starting from the ring polymer instanton formalism applied to a system-bath model. We derive general equations that incorporate the spatial and frequency dependence of the friction tensor and then combine this method with the ab initio electronic friction formalism for the calculation of thermal reaction rates. We show that the connection between RPI-EF and the form of the electronic friction tensor presented in this work does not require any further approximations, and it is expected to be valid as long as the approximations of both underlying theories remain valid.
Collapse
Affiliation(s)
- Y Litman
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - E S Pós
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C L Box
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - R Martinazzo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - R J Maurer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M Rossi
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Martinazzo R, Burghardt I. Quantum Dynamics with Electronic Friction. PHYSICAL REVIEW LETTERS 2022; 128:206002. [PMID: 35657868 DOI: 10.1103/physrevlett.128.206002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/19/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
A theory of electronic friction is developed using the exact factorization of the electronic-nuclear wave function. No assumption is made regarding the electronic bath, which can be made of independent or interacting electrons, and the nuclei are treated quantally. The ensuing equation of motion for the nuclear wave function is a nonlinear Schrödinger equation including a friction term. The resulting friction kernel agrees with a previously derived mixed quantum-classical result by Dou et al., [Phys. Rev. Lett. 119, 046001 (2017)]PRLTAO0031-900710.1103/PhysRevLett.119.046001, except for a pseudomagnetic contribution in the latter that is here removed. More specifically, it is shown that the electron dynamics generally washes out the gauge fields appearing in the adiabatic dynamics. However, these are fully re-established in the typical situation where the electrons respond rapidly on the slow time scale of the nuclear dynamics (Markov limit). Hence, we predict Berry's phase effects to be observable also in the presence of electronic friction. Application to a model vibrational relaxation problem proves that the proposed approach represents a viable way to account for electronic friction in a fully quantum setting for the nuclear dynamics.
Collapse
Affiliation(s)
- Rocco Martinazzo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, via Golgi 19, 20133 Milano, Italy
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
21
|
Gardner J, Douglas-Gallardo OA, Stark WG, Westermayr J, Janke SM, Habershon S, Maurer RJ. NQCDynamics.jl: A Julia package for nonadiabatic quantum classical molecular dynamics in the condensed phase. J Chem Phys 2022; 156:174801. [PMID: 35525649 DOI: 10.1063/5.0089436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurate and efficient methods to simulate nonadiabatic and quantum nuclear effects in high-dimensional and dissipative systems are crucial for the prediction of chemical dynamics in the condensed phase. To facilitate effective development, code sharing, and uptake of newly developed dynamics methods, it is important that software implementations can be easily accessed and built upon. Using the Julia programming language, we have developed the NQCDynamics.jl package, which provides a framework for established and emerging methods for performing semiclassical and mixed quantum-classical dynamics in the condensed phase. The code provides several interfaces to existing atomistic simulation frameworks, electronic structure codes, and machine learning representations. In addition to the existing methods, the package provides infrastructure for developing and deploying new dynamics methods, which we hope will benefit reproducibility and code sharing in the field of condensed phase quantum dynamics. Herein, we present our code design choices and the specific Julia programming features from which they benefit. We further demonstrate the capabilities of the package on two examples of chemical dynamics in the condensed phase: the population dynamics of the spin-boson model as described by a wide variety of semiclassical and mixed quantum-classical nonadiabatic methods and the reactive scattering of H2 on Ag(111) using the molecular dynamics with electronic friction method. Together, they exemplify the broad scope of the package to study effective model Hamiltonians and realistic atomistic systems.
Collapse
Affiliation(s)
- James Gardner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Oscar A Douglas-Gallardo
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Wojciech G Stark
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Julia Westermayr
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Svenja M Janke
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Zhou X, Meng G, Guo H, Jiang B. First-Principles Insights into Adiabatic and Nonadiabatic Vibrational Energy-Transfer Dynamics during Molecular Scattering from Metal Surfaces: The Importance of Surface Reactivity. J Phys Chem Lett 2022; 13:3450-3461. [PMID: 35412832 DOI: 10.1021/acs.jpclett.2c00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Energy transfer is ubiquitous during molecular collisions and reactions at gas-surface interfaces. Of particular importance is vibrational energy transfer because of its relevance to bond forming and breaking. In this Perspective, we review recent first-principles studies on vibrational energy-transfer dynamics during molecular scattering from metal surfaces at the state-to-state level. Taking several representative systems as examples, we highlight the intrinsic correlation between vibrational energy transfer in nonreactive scattering and surface reactivity and how it operates in both electronically adiabatic and nonadiabatic pathways. Adiabatically, the presence of a dissociation barrier softens a bond in the impinging molecule and increases its couplings with other molecular modes and surface phonons. In the meantime, the stronger interaction between the molecule and the surface also changes the electronic structure at the barrier, resulting in an increase of nonadiabatic effects. We further discuss future prospects toward a more quantitative understanding of this important surface dynamical process.
Collapse
Affiliation(s)
- Xueyao Zhou
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Meng
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Zhang Y, Xia J, Jiang B. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. J Chem Phys 2022; 156:114801. [DOI: 10.1063/5.0080766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this work, we present a general purpose deep neural network package for representing energies, forces, dipole moments, and polarizabilities of atomistic systems. This so-called recursively embedded atom neural network model takes advantages of both the physically inspired atomic descriptor based neural networks and the message-passing based neural networks. Implemented in the PyTorch framework, the training process is parallelized on both the central processing unit and the graphics processing unit with high efficiency and low memory in which all hyperparameters can be optimized automatically. We demonstrate the state-of-the-art accuracy, high efficiency, scalability, and universality of this package by learning not only energies (with or without forces) but also dipole moment vectors and polarizability tensors in various molecular, reactive, and periodic systems. An interface between a trained model and LAMMPs is provided for large scale molecular dynamics simulations. We hope that this open-source toolbox will allow for future method development and applications of machine learned potential energy surfaces and quantum-chemical properties of molecules, reactions, and materials.
Collapse
Affiliation(s)
- Yaolong Zhang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junfan Xia
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Hu C, Lin Q, Guo H, Jiang B. Influence of supercell size on Gas-Surface Scattering: A case study of CO scattering from Au(1 1 1). Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zhou X, Zhang Y, Yin R, Hu C, Jiang B. Neural Network Representations for Studying
Gas‐Surface
Reaction Dynamics: Beyond the
Born‐Oppenheimer
Static Surface Approximation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongrong Yin
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ce Hu
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
26
|
Douglas-Gallardo OA, Box CL, Maurer RJ. Plasmonic enhancement of molecular hydrogen dissociation on metallic magnesium nanoclusters. NANOSCALE 2021; 13:11058-11068. [PMID: 34152348 DOI: 10.1039/d1nr02033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven plasmonic enhancement of chemical reactions on metal catalysts is a promising strategy to achieve highly selective and efficient chemical transformations. The study of plasmonic catalyst materials has traditionally focused on late transition metals such as Au, Ag, and Cu. In recent years, there has been increasing interest in the plasmonic properties of a set of earth-abundant elements such as Mg, which exhibit interesting hydrogenation chemistry with potential applications in hydrogen storage. This work explores the optical, electronic, and catalytic properties of a set of metallic Mg nanoclusters with up to 2057 atoms using time-dependent density functional tight-binding and density functional theory calculations. Our results show that Mg nanoclusters are able to produce highly energetic hot electrons with energies of up to 4 eV. By electronic structure analysis, we find that these hot electrons energetically align with electronic states of physisorbed molecular hydrogen, occupation of which by hot electrons can promote the hydrogen dissociation reaction. We also find that the reverse reaction, hydrogen evolution on metallic Mg, can potentially be promoted by hot electrons, but following a different mechanism. Thus, from a theoretical perspective, Mg nanoclusters display very promising behaviour for their use in light promoted storage and release of hydrogen.
Collapse
Affiliation(s)
| | - Connor L Box
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
27
|
Westermayr J, Gastegger M, Schütt KT, Maurer RJ. Perspective on integrating machine learning into computational chemistry and materials science. J Chem Phys 2021; 154:230903. [PMID: 34241249 DOI: 10.1063/5.0047760] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties-be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.
Collapse
Affiliation(s)
- Julia Westermayr
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michael Gastegger
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
| | - Kristof T Schütt
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Auerbach DJ, Tully JC, Wodtke AM. Chemical dynamics from the gas‐phase to surfaces. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/ntls.10005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel J. Auerbach
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| | - John C. Tully
- Department of Chemistry Yale University New Haven Connecticut USA
| | - Alec M. Wodtke
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| |
Collapse
|
29
|
Lin Q, Zhang L, Zhang Y, Jiang B. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials. J Chem Theory Comput 2021; 17:2691-2701. [PMID: 33904718 DOI: 10.1021/acs.jctc.1c00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neural network (NN) potential energy surfaces (PESs) have been widely used in atomistic simulations with ab initio accuracy. While constructing NN PESs, their training data points are often sampled by molecular dynamics trajectories. This strategy can be however inefficient for reactive systems involving rare events. Here, we develop an uncertainty-driven active learning strategy to automatically and efficiently generate high-dimensional NN-based reactive potentials, taking a gas-surface reaction as an example. The difference between two independent NN models is used as a simple and differentiable uncertainty metric, allowing us to quickly search in the uncertainty space and place new samples at which the PES is less reliable. By interfacing this algorithm with the first-principles simulation package, we demonstrate that a globally accurate NN potential of the H2 + Ag(111) system can be constructed with merely ∼150 data points. This PES can be further refined to describe H2 dissociation on Ag(100) by adding ∼130 more configurations on this facet. The entire process is completely automatic and self-terminated once the relative error criterion is fulfilled. Impressively, data points sampled by this uncertainty-driven strategy are substantially fewer than by the traditional trajectory-based sampling. The final NN PES not only converges well the quantum dissociation probability of the molecule but also well-reproduces the phonon properties of the substrate and is capable of describing surface temperature effects. These results show the potential of this active learning approach in developing high-dimensional NN reactive potentials in gas and condensed phases.
Collapse
Affiliation(s)
- Qidong Lin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Yin R, Jiang B. Mechanical Vibrational Relaxation of NO Scattering from Metal and Insulator Surfaces: When and Why They Are Different. PHYSICAL REVIEW LETTERS 2021; 126:156101. [PMID: 33929236 DOI: 10.1103/physrevlett.126.156101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
NO scattering from metallic and insulating surfaces represents contrasting benchmark systems for understanding energy transfer at gas-surface interface. Strikingly different behaviors of highly vibrationally excited NO scattered from Au(111) and LiF(001) were observed and attributed to disparate electronic structures between metals and insulators. Here, we reveal an alternative mechanical origin of this discrepancy by comparative molecular dynamics simulations with globally accurate adiabatic neural network potentials of both systems. We find that highly vibrating NO can reach for the high-dissociation barrier on Au(111), by which vibrational energy can largely transfer to translation or rotation and further dissipate into substrate phonons. This mechanical energy transfer channel is forbidden in the purely repulsive NO/LiF(001) system or for low-vibrating NO on Au(111), where molecular vibration is barely coupled to other degrees of freedom. Our results emphasize that the initial state and potential energy landscape concurrently influence the mechanical energy transfer dynamics of gas-surface scattering.
Collapse
Affiliation(s)
- Rongrong Yin
- Department of Chemical Physics, Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Department of Chemical Physics, Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|