1
|
Xu Z, Sun D, Xu J, Yang R, Russell JD, Liu G. Progress and Challenges in Polystyrene Recycling and Upcycling. CHEMSUSCHEM 2024; 17:e202400474. [PMID: 38757556 DOI: 10.1002/cssc.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Polystyrene is a staple plastic in the packaging and insulation market. Despite its good recyclability, the willingness of PS recycling remains low, largely due to the high recycling cost and limited profitability. This review examines the research progresses, gaps, and challenges in areas that affect the recycling costs, including but not limited to logistics, packaging design, and policymaking. We critically evaluate the recent developments in upcycling strategies, and we particularly focus on tandem and hydrogen-atom transfer (HAT) upcycling strategies. We conclude that future upcycling studies should focus on not only reaction chemistry and mechanisms but also economic viability of the processes. The goal of this review is to stimulate the development of innovative recycling strategies with low recycling costs and high economic output values. We hope to stimulate the economic and technological momentum of PS recycling towards a sustainable and circular economy.
Collapse
Affiliation(s)
- Zhen Xu
- School of Chemistry and Chemical Engineering, Northwest Polytechnology University, Xi'an, 710000, China
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
| | - Dongshi Sun
- School of Information and Business Management, Dalian Neusoft University of Information, Dalian, 116023, China
| | - Jianjun Xu
- Institute of Supply Chain Analytics, Dongbei University of Finance and Economics, Dalian, 116025, China
| | - Rong Yang
- School of Chemistry and Chemical Engineering, Northwest Polytechnology University, Xi'an, 710000, China
| | - Jennifer D Russell
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA-24061, US
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, US
| |
Collapse
|
2
|
Tang Y. Single-Molecule Mixture: A Concept in Polymer Science. Int J Mol Sci 2024; 25:7571. [PMID: 39062814 PMCID: PMC11277297 DOI: 10.3390/ijms25147571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In theory, two extreme forms of substances exist: the pure form and the single-molecule mixture form. The latter contains a mixture of molecules with molecularly different structures. Inspired by the "chemical space" concept, in this paper, I report a study of the single-molecule mixture state that combines model construction and mathematical analysis, obtaining some interesting results. These results provide theoretical evidence that the single-molecule mixture state may indeed exist in realistic synthetic or natural polymer systems.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Lee G, Park G, Park JG, Bak Y, Lee C, Yoon DK. Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307388. [PMID: 37991422 DOI: 10.1002/adma.202307388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Developing inorganic-organic composite polymers necessitates a new strategy for effectively controlling shape and optical properties while accommodating guest materials, as conventional polymers primarily act as carriers that transport inorganic substances. Here, a universal approach is introduced utilizing mesoporous liquid crystal polymer particles (MLPs) to fabricate inorganic-organic composites. By leveraging the liquid crystal phase, morphology and optical properties are precisely controlled through the molecular-level arrangement of the host, here monomers. The controlled host material allows the synthesis of inorganic particles within the matrix or accommodation of presynthesized nano-inorganic particles, all while preserving the intrinsic properties of the host material. This composite material surpasses the functional capabilities of the polymer alone by sequentially integrating one or more inorganic materials, allowing for the incorporation of multiple functionalities within a single polymer particle. Furthermore, this approach effectively mitigates the drawbacks associated with guest materials resulting in a substantial enhancement of composite performance. The presented approach is anticipated to hold immense potential for various applications in optoelectronics, catalysis, and biosensing, addressing the evolving demands of the society.
Collapse
Affiliation(s)
- Geunjung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Watanabe S, Nishio H, Oyaizu K. Facile synthesis of telechelic poly(phenylene sulfide)s by means of electron-deficient aromatic sulfonium electrophiles. RSC Adv 2023; 13:32363-32370. [PMID: 37928850 PMCID: PMC10623243 DOI: 10.1039/d3ra06262g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
We report the facile synthesis of telechelic poly(phenylene sulfide) (PPS) derivatives bearing functional groups at both termini. α,ω-Dihalogenated dimethyl-substituted PPS were obtained in high yield with a high degree of end-functionalization by using soluble poly(2,6-dimethyl-1,4-phenylenesulfide) (PMPS) and 4,4'-dihalogenated diphenyl disulfide (X-DPS, X = Cl, Br) as a precursor and an end-capping agent, respectively. Further end-functionalization is achieved through cross-coupling reactions; particularly, the Kumada-Tamao cross-coupling reaction of bromo-terminated telechelic PMPS and a vinylated Grignard reagent afforded end-vinylated PMPS with thermosetting properties. This synthetic approach can be applied to the preparation of various aromatic telechelic polymers with the desired structures and functionalities.
Collapse
Affiliation(s)
- Seigo Watanabe
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Hiromichi Nishio
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| |
Collapse
|
5
|
Maksso I, Samanta RC, Zhan Y, Zhang K, Warratz S, Ackermann L. Polymer up-cycling by mangana-electrocatalytic C(sp 3)-H azidation without directing groups. Chem Sci 2023; 14:8109-8118. [PMID: 37538824 PMCID: PMC10395267 DOI: 10.1039/d3sc02549g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The chemical up-cycling of polymers into value-added materials offers a unique opportunity to place plastic waste in a new value chain towards a circular economy. Herein, we report the selective up-cycling of polystyrenes and polyolefins to C(sp3)-H azidated materials under electrocatalytic conditions. The functionalized polymers were obtained with high retention of mass average molecular mass and high functionalization through chemo-selective mangana-electrocatalysis. Our strategy proved to be broadly applicable to a variety of homo- and copolymers. Polyethylene, polypropylene as well as post-consumer polystyrene materials were functionalized by this approach, thereby avoiding the use of hypervalent-iodine reagents in stoichiometric quantities by means of electrocatalysis. This study, hence, represents a chemical oxidant-free polymer functionalization by electro-oxidation. The electrocatalysis proved to be scalable, which highlights its unique feature for a green hydrogen economy by means of the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Isaac Maksso
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Yifei Zhan
- Institut für Holztechnologie und Holzwerkstoffe, Georg-August-Universität Büsgenweg 4 37077 Göttingen Germany
| | - Kai Zhang
- Institut für Holztechnologie und Holzwerkstoffe, Georg-August-Universität Büsgenweg 4 37077 Göttingen Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
6
|
Dou B, Xu Y, Wang J. Gold-Catalyzed Precise Bromination of Polystyrene. J Am Chem Soc 2023; 145:10422-10430. [PMID: 37126502 DOI: 10.1021/jacs.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Modification of commodity aromatic polymers is highly desirable for accessing materials with new properties. The long-standing challenge for such approaches lies in the development of catalytic methods that can functionalize the aromatic polymers with high precision while preserving the molecular weight and distribution of the starting polymers without any alteration. Herein, we report a highly efficient AuCl3-catalyzed site-selective aromatic C-H halogenation of polystyrene. The most important feature of this method is that the degree of halogenation can be precisely controlled by simply changing the loading of the halogenating agent, thus allowing the tuning of functional group density in an accurate and predictable manner. Various functional groups, including NH2 and Bpin, can be installed through effective derivatization of the resultant brominated polystyrene, thus making the method a valuable strategy for the synthesis of value-added materials with tailored properties.
Collapse
Affiliation(s)
- Bowen Dou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
- The State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Chu B, Wu X, Fu Z, Wu W, Wang B, Zhu J. Rhodium-Catalyzed Redox-Neutral Cross-Dehydrogenative Alkenylation of Arylhydrazines for Polymer Synthesis. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benfa Chu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Ziwen Fu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Bin Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|