1
|
Ye R, Liu X, Dong G. Enabling Aryl Chloride-Mediated Palladium/Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2025:e202500897. [PMID: 40042497 DOI: 10.1002/anie.202500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
While the palladium/norbornene (Pd/NBE) cooperative catalysis has become increasingly useful for arene functionalization, its substrate scope has been mainly restricted to reactive aryl iodides and bromides. Despite being a more available and attractive feedstock, common aryl chlorides have not been used as substrates for the Pd/NBE catalysis. Herein, we report the first general Pd/NBE-catalyzed vicinal difunctionalization of aryl chlorides. Enabled by the combination of secondary-amide-substituted NBEs and XPhos ligand, diverse aryl chlorides can now undergo successful ortho alkylation, amination, and acylation with different ipso terminations, including olefination, hydrogenation, and alkynylation. To show the utility of this method, late-stage derivatizations of complex bioactive compounds and sequential functionalizations of polyhaloarenes have been achieved.
Collapse
Affiliation(s)
- Rong Ye
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Xin Liu
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Dupommier D, Vuagnat M, Rzayev J, Roy S, Jubault P, Besset T. Site-Selective Ortho/Ipso C-H Difunctionalizations of Arenes using Thianthrene as a Leaving Group. Angew Chem Int Ed Engl 2024; 63:e202403950. [PMID: 38712851 DOI: 10.1002/anie.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Site-selective ortho/ipso C-H difunctionalizations of aromatic compounds were designed to afford polyfunctionalized arenes including challenging 1,2,3,4-tetrasubstituted ones (62 examples, up to 97 % yields). To ensure the excellent regioselectivity of the process while keeping high efficiency, an original strategy based on a "C-H thianthenation/Catellani-type reaction" sequence was developed starting from simple arenes. Non-prefunctionalized arenes were first regioselectively converted into the corresponding thianthrenium salts. Then, a palladium-catalyzed, norbornene (NBE)-mediated process allowed the synthesis of ipso-olefinated/ortho-alkylated polyfunctionalized arenes using a thianthrene as a leaving group (revisited Catellani reaction). Pleasingly, using a commercially available norbornene (NBE) and a unique catalytic system, synthetic challenges known for the Catellani reaction with aryl iodides were smoothly and successfully tackled with the "thianthrenium" approach. The protocol was robust (gram-scale reaction) and was widely applied to the two-fold functionalization of various arenes including bio-active compounds. Moreover, a panel of olefins and alkyl halides as coupling partners was suitable. Pleasingly, the "thianthrenium" strategy was successfully further applied to the incorporation of other groups at the ipso (CN/alkyl/H, aryl) and ortho (alkyl, aryl, amine, thiol) positions, showcasing the generality of the process.
Collapse
Affiliation(s)
- Dorian Dupommier
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Javid Rzayev
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Sourav Roy
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, F-76000, Rouen, France
| |
Collapse
|
3
|
Nan J, Lei M, Chen G, Ma Y, Liang C, Wang J. Palladium/norbornene-catalyzed diversified trifunctionalization of aryl-thianthreniums. Chem Commun (Camb) 2024; 60:5558-5561. [PMID: 38712611 DOI: 10.1039/d4cc01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A novel Catellani-type conversion is reported using aryl-thianthreniums (aryl-TTs) instead of aryl halides. Three classes of ortho-dual C-H functionalization involving alkylation, amination, and deuterated methylation and five types of ipso-operation including alkenylation, cyanation, methylation, hydrogenation, and alkynylation all proceed well in this procedure. In this conversion, aryl-TTs exhibit satisfactory reactivity and feature the advantage that the leaving TT unit can be recovered. More strikingly, this finding represents a new chemistry conversion of aryl-TTs, wherein contiguous tri-functionalization in a single chemical manipulation is realized.
Collapse
Affiliation(s)
- Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaoyang Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Liu S, Cheng L, Liu L. Synthesis of Biaryl Carboxylic Acids through a Cascade Suzuki-Miyaura Coupling/Friedel-Crafts Alkylation/Lewis-Acid-Catalyzed Rearrangement/Aromatization Process. Org Lett 2024; 26:1902-1907. [PMID: 38421159 DOI: 10.1021/acs.orglett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this study, we present a series of 1,3-dicarbonyls that can undergo a cascade Suzuki coupling, followed by a Friedel-Crafts reaction to produce molecules containing polycyclic alcohols. These polycyclic alcohols can then be converted into biaryl carboxylic acids through ring-opening rearrangement reactions catalyzed by a Lewis acid. The Friedel-Crafts reaction exhibits selective para-positioning of the hydroxyl group and demonstrates good compatibility with functional groups with a yield of up to 82%. Substrates with substituted hydroxyl groups can also be converted into biaryl carboxylic acids through a Lewis-acid-catalyzed ring-opening rearrangement.
Collapse
Affiliation(s)
- Shaodong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Z, Chen X, Niu ZJ, Li ZM, Li Q, Shi WY, Ding T, Liu XY, Liang YM. A Practical and Regioselective Strategy for Aromatic C-H Difunctionalization via Site-Selective C-H Thianthrenation. Org Lett 2024; 26:1813-1818. [PMID: 38386925 DOI: 10.1021/acs.orglett.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Herein, we present a novel Catellani-type reaction that employed aryl-thianthrenium salts as aryl substrates to trigger the subsequent palladium/norbornene cooperatively catalyzed progress. This strategy can achieve site-selective C-H difunctionalization of aryl compounds without directing groups or a known initiating reagent. A series of functionalized syntheses of bioactive molecules further demonstrated the potential of this strategy.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhuo-Mei Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Liu YW, Wang MM, Zhang YQ, Xu H, Dai HX. Construction of Indole-Fused Seven- and Eight-Membered Azaheterocycles via a Tandem Pd/NBE-Catalyzed Decarbonylation and Dual C-H Activation Sequence. Org Lett 2023; 25:5406-5410. [PMID: 37458387 DOI: 10.1021/acs.orglett.3c01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein, we report the transformation of aromatic acids to indole-fused seven- and eight-membered azaheterocycles. Two C-C bonds are formed via the cleavage of one C-C bond and two C-H bonds. The incorporation of indole moieties into bioactive pharmaceuticals and natural products to construct a medium-sized polyfused heterocycle demonstrates the synthetic utility of the protocol.
Collapse
Affiliation(s)
- Yu-Wen Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng-Meng Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yun-Qian Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu M, Huang J, Xu H, Dai HX. Construction of Chalcogenated Methylene Chroman-3-ones via Palladium-Catalyzed Carbocyclization. J Org Chem 2023. [PMID: 37191073 DOI: 10.1021/acs.joc.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report herein the synthesis of exo-chalcogenated methylene chroman-3-ones via palladium-catalyzed intramolecular acyl-chalcogenation of alkyne with thio- and selenoesters. Chalcogen containing tetrasubstituted alkenes are obtained stereoselectively. This protocol tolerates various functional groups and heterocycles, affording the chroman-3-one products in moderate-to-good yields.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaxin Huang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
8
|
Yang S, Yu X, Szostak M. Divergent Acyl and Decarbonylative Liebeskind-Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd-NHC (NHC = N-Heterocyclic Carbene) Catalysis. ACS Catal 2023; 13:1848-1855. [PMID: 38037656 PMCID: PMC10686545 DOI: 10.1021/acscatal.2c05550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-catalyzed cross-coupling reactions of thioesters by selective acyl C(O)-S cleavage have emerged as a powerful platform for the preparation of complex molecules. Herein, we report divergent Liebeskind-Srogl cross-coupling of thioesters by Pd-NHC (NHC = N-heterocyclic carbene) catalysis. The reaction provides straightforward access to functionalized ketones by highly selective C(acyl)-S cleavage under mild conditions. Most crucially, the conditions enable direct functionalization of a range of complex pharmaceuticals decorated with a palette of sensitive functional groups, providing attractive products for medicinal chemistry programs. Furthermore, decarbonylative Liebeskind-Srogl cross-coupling by C(acyl)-S/C(aryl)-C(O) cleavage is reported. Cu metal cofactor directs the reaction pathway to acyl or decarbonylative pathway. This reactivity is applicable to complex pharmaceuticals. The reaction represents the mildest decarbonylative Suzuki cross-coupling discovered to date. The Cu-directed divergent acyl and decarbonylative cross-coupling of thioesters opens up chemical space in complex molecule synthesis.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Du G, Zhu P, Wang J, Li X, Zhang D, Wang C, Sun F. Modular Synthesis of
ortho
‐Thiolated Aryl Esters Enabled with Thiocarbonate through Catellani Strategy. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guopeng Du
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Pingliang Zhu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Jing Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Dao‐Peng Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Chuan‐Zeng Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Feng‐Gang Sun
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|
10
|
Goncharova IK, Ulianova EA, Novikov RA, Volodin AD, Korlyukov AA, Arzumanyan AV. Siloxane-containing derivatives of benzoic acid: chemical transformation of the carboxyl group. NEW J CHEM 2022. [DOI: 10.1039/d2nj03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research presents a scalable method for chemical transformation of Si-containing derivatives of benzoic acid to a wide range of corresponding esters, thioesters, amides, etc. Some of them form HOF-like structures in the crystalline state.
Collapse
Affiliation(s)
- Irina K. Goncharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Eva A. Ulianova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- HZ University of Applied Sciences, 4382 NW Middelburg, The Netherlands
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Alexander D. Volodin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Ashot V. Arzumanyan
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|