1
|
del Río‐Rodríguez JL, Gutiérrez‐Tarriño S, Chinchilla LE, Holgado JP, Villar‐García IJ, Pérez‐Dieste V, Calvino JJ, Oña‐Burgos P. Multifunctional Heterogeneous Cobalt Catalyst for the One-Pot Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes in Water. CHEMSUSCHEM 2025; 18:e202402141. [PMID: 39651548 PMCID: PMC11997933 DOI: 10.1002/cssc.202402141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/11/2024]
Abstract
The endeavor of sustainable chemistry has led to significant advancements in green methodologies aimed at minimizing environmental impact while maximizing efficiency. Herein, a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes is reported for the first time in aqueous media while using a non-noble metal catalyst. This work demonstrates that the combination of nitrogen and phosphorous ligands in the synthesis of supported heteroatom-incorporated Co nanoparticles is crucial for obtaining the desired benzimidazoles. The process achieves >99 % conversion, >99 % chemoselectivity and stability for the reduction of dinitroarenes using water as the solvent and hydrogen as the reductant under mild reaction conditions. The robustness of the catalyst has been investigated using several advanced techniques such as HRTEM, HAADF-STEM, XEDS, EELS, and NAP-XPS. In fact, we have shown that the introduction of N and P dopants prevents metal leaching and the sintering of the cobalt nanoparticles. Finally, to explore the general catalytic performance, a wide range of substituted dinitroarenes and benzaldehydes were evaluated, yielding benzimidazoles with competitive and scalable results, including MBIB (94 % yield), which is a compound of pharmaceutical interest.
Collapse
Affiliation(s)
- José Luis del Río‐Rodríguez
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Silvia Gutiérrez‐Tarriño
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Lidia E. Chinchilla
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CádizCampus Río San Pedro S/N, Puerto Real11510CádizSpain
| | - Juan Pedro Holgado
- Instituto de Ciencia de Materiales de SevillaDepartamento de Química InorgánicaCSIC-Universidad de SevillaAv. Américo Vespucio, 4941092SevilleSpain
| | - Ignacio J. Villar‐García
- Universidad CEU San PabloDepartamento de QuímicaFacultad de FarmaciaUrbanización Montepríncipe28668Boadilla del MonteMadridSpain
| | - Virginia Pérez‐Dieste
- ALBA Synchrotron Light SourceCarretera BP 1413 Km. 3.308290Cerdanyola del VallèsBarcelonaSpain
| | - Jose J. Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CádizCampus Río San Pedro S/N, Puerto Real11510CádizSpain
| | - Pascual Oña‐Burgos
- Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
2
|
Liu YF, Lin XL, Ming BM, Hu QL, Liu HQ, Chen XJ, Liu YH, Yang GP. Three Polyoxometalate-Based Ag-Organic Compounds as Heterogeneous Catalysts for the Synthesis of Benzimidazoles. Inorg Chem 2024; 63:5681-5688. [PMID: 38484383 DOI: 10.1021/acs.inorgchem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Three new POM-based compounds, with formulae [Na0.63Ag3(Htba)2.37(tba)0.63(H2O)2(PMo12O40)]·4H2O (Ag3PMo), [Ag4(Htba)4(H2O)2(PMo12O40)](NO3)·H2O (Ag4PMo), and [Ag3(Htba)2(tba)(PW12O40)0.5](NO3)0.5·13H2O (Ag3PW), were prepared with a 3-(4H-1,2,4-triazol-4-yl)benzoic acid (Htba) ligand, Keggin-type anions ([PMo12O40]3-/[PW12O40]3-), and a silver ion (Ag+). The structural features of these compounds are particularly different from the multinuclear subunits, which are [Ag3(tba)3] clusters in Ag3PMo, [Ag4(tba)3] chains in Ag4PMo, and [Ag3(tba)3]2 clusters in Ag3PW, connected by multidonor atom tba ligands and Ag+ ions. Meanwhile, in these compounds, polyanions act as polydentate ligands to link adjacent Ag-tba metal-organic units and expand their spatial dimensions. These compounds, as heterogeneous catalysts, exhibit high stability and excellent catalytic activity to construct benzimidazoles. Ag3PMo could efficiently catalyze the condensation of benzene-1,2-diamines and benzaldehydes and produce benzimidazoles in good yields. In addition, Ag3PMo could be reused up to 7 times and was suitable for gram-scale reactions.
Collapse
Affiliation(s)
- Yu-Feng Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Xiao-Ling Lin
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Bang-Ming Ming
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Qi-Long Hu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Hao-Qi Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Xue-Jiao Chen
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Yun-Hai Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Guo-Ping Yang
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| |
Collapse
|
4
|
Zhang M, Grasset F, Masubuchi Y, Shimada T, Nguyen TKN, Dumait N, Renaud A, Cordier S, Berthebaud D, Halet JF, Uchikoshi T. Enhanced NH 3 Sensing Performance of Mo Cluster-MoS 2 Nanocomposite Thin Films via the Sulfurization of Mo 6 Cluster Iodides Precursor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:478. [PMID: 36770439 PMCID: PMC9921185 DOI: 10.3390/nano13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The high-performance defect-rich MoS2 dominated by sulfur vacancies as well as Mo-rich environments have been extensively studied in many fields, such as nitrogen reduction reactions, hydrogen evolution reactions, as well as sensing devices for NH3, which are attributed to the under-coordinated Mo atoms playing a significant role as catalytic sites in the defect area. In this study, the Mo cluster-MoS2 composite was creatively synthesized through a one-step sulfurization process via H2/H2S gas flow. The Mo6 cluster iodides (MIs) coated on the fluorine-doped tin oxide (FTO) glass substrate via the electrophoretic deposition method (i.e., MI@FTO) were used as a precursor to form a thin-film nanocomposite. Investigations into the structure, reaction mechanism, and NH3 gas sensing performance were carried out in detail. The results indicated that during the gas flowing, the decomposed Mo6 cluster iodides played the role of template and precursor, forming complicated Mo cluster compounds and eventually producing MoS2. These Mo cluster-MoS2 thin-film nanocomposites were fabricated and applied as gas sensors for the first time. It turns out that after the sulfurization process, the response of MI@FTO for NH3 gas increased three times while showing conversion from p-type to n-type semiconductor, which enhances their possibilities for future device applications.
Collapse
Affiliation(s)
- Meiqi Zhang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Fabien Grasset
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Yuji Masubuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Toshihiro Shimada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Thi Kim Ngan Nguyen
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- International Center for Young Scientists, ICYS-SENGEN, Global Networking Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Noée Dumait
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Adèle Renaud
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Stéphane Cordier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - David Berthebaud
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jean-François Halet
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tetsuo Uchikoshi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Tan Z, Zhang X, Xu M, Fu Y, Zhuang W, Li M, Wu X, Ying H, Ouyang P, Zhu C. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. SCIENCE ADVANCES 2022; 8:eadd1912. [PMID: 36070374 PMCID: PMC9451157 DOI: 10.1126/sciadv.add1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Inspired by Nature's ingenuity, considerable progress has been made in recent years to develop chemoenzymatic processes by the integration of environmentally friendly feature of biocatalysis with versatile reactivity of chemocatalysis. However, the current types of chemoenzymatic processes are relatively few and mostly rely on metal catalysts. Here, we report a previously unexplored cooperative chemoenzymatic system for the synthesis of N-heterocycles. Starting from alcohols and amines, benzimidazole, pyrazine, quinazoline, indole, and quinoline can be obtained in excellent yields in water with O2 as the terminal oxidant. Synthetic bridged flavin analog is served as a bifunctional organocatalyst for the regeneration of cofactor nicotinamide adenine dinucleotide in the bioprocess and oxidative cyclodehydrogenation in the chemoprocess. Compared to the classical acceptorless dehydrogenative coupling strategy, being metal and base free, requiring only water as solvent, and not needing atmosphere protection were observed for the present method, exhibiting a favorable green and sustainable alternative.
Collapse
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| |
Collapse
|