Jiang S, Huang H. Mechanism-Guided Design of Chain-Growth Click Polymerization Based on a Thiol-Michael Reaction.
Angew Chem Int Ed Engl 2023;
62:e202217895. [PMID:
36734515 DOI:
10.1002/anie.202217895]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Collapse