1
|
Ledvinka J, Rota Sperti F, Paragi G, Pirrotta M, Chéron N, Valverde IE, Menova P, Monchaud D. Fluorescence Detection of DNA/RNA G-Quadruplexes (G4s) by Twice-as-Smart Ligands. ChemMedChem 2025; 20:e202400829. [PMID: 39714851 PMCID: PMC11961149 DOI: 10.1002/cmdc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Fluorescence detection of DNA and RNA G-quadruplexes (G4s) is a very efficient strategy to assess not only the existence and prevalence of cellular G4s but also their relevance as targets for therapeutic interventions. Among the fluorophores used to this end, turn-on probes are the most interesting since their fluorescence is triggered only upon interaction with their G4 targets, which ensures a high sensitivity and selectivity of detection. We reported on a series of twice-as-smart G4 probes, which are both smart G4 ligands (whose structure is reorganized upon interaction with G4s) and smart fluorescent probes (whose fluorescence is turned on upon interaction with G4s). The fine mechanistic details behind the excellent properties of the best prototype N-TASQ remain to be deciphered: to investigate this, we report here on the synthesis and studies of two analogues, TzN-TASQ and AlkN-TASQ, and on a careful analysis of their G4-interacting properties, investigated both in vitro and in silico. Our results show that fine-tuning their constitutive structural elements allows for increasing the efficiency of both their 'off' (i. e., a conformation with a low fluorescence) and 'on' states (i. e., a conformation with a high fluorescence), which opens interesting ways for the design of more efficient fluorogenic G4 probes.
Collapse
Affiliation(s)
- Jiri Ledvinka
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE)9, Av. Alain Savary21078DijonFR
- University of Chemistry and Technology, PragueTechnická 516628Prague 6CZ
- Current address: Max Planck Institute of Colloids and Interfaces, 14476 Postdam, DE; and Institute of Chemistry and BiochemistryFreie Universität Berlin14195BerlinDE
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE)9, Av. Alain Savary21078DijonFR
| | - Gabor Paragi
- Institute of PhysicsUniversity of PécsH-7624PécsIfjúság str 6HU
- Department of Theoretical PhysicsUniversity of SzegedTisza Lajos krt. 84–866720SzegedHU
- Department of Medical ChemistryUniversity of SzegedDóm tér 8SzegedHungary
| | - Marc Pirrotta
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE)9, Av. Alain Savary21078DijonFR
| | - Nicolas Chéron
- Chimie Physique et Chimie du Vivant (CPCV), Département de chimie, École Normale Supérieure (ENS), PSL UniversitySorbonne Université, CNRS UMR822875005ParisFrance
| | - Ibai E. Valverde
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE)9, Av. Alain Savary21078DijonFR
| | - Petra Menova
- University of Chemistry and Technology, PragueTechnická 516628Prague 6CZ
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE)9, Av. Alain Savary21078DijonFR
| |
Collapse
|
2
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
3
|
M J VK, Mitteaux J, Wang Z, Wheeler E, Tandon N, Yun Jung S, Hudson RHE, Monchaud D, Tsvetkov AS. Small molecule-based regulation of gene expression in human astrocytes switching on and off the G-quadruplex control systems. J Biol Chem 2025; 301:108040. [PMID: 39615684 PMCID: PMC11750478 DOI: 10.1016/j.jbc.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
A great deal of attention is being paid to strategies seeking to uncover the biology of the four-stranded nucleic acid structure G-quadruplex (G4) via their stabilization in cells with G4-specific ligands. The conventional definition of chemical biology implies that a complete assessment of G4 biology can only be achieved by implementing a complementary approach involving the destabilization of cellular G4s by ad hoc molecular effectors. We report here on an unprecedented comparison of the cellular consequences of G4 chemical stabilization by pyridostatin (PDS) and destabilization by phenylpyrrolocytosine (PhpC) at both transcriptome- and proteome-wide scales in patient-derived primary human astrocytes. Our results show that the stabilization of G4s by PDS triggers the dysregulation of many cellular circuitries, the most drastic effects originating in the downregulation of 354 transcripts and 158 proteins primarily involved in RNA transactions. In contrast, destabilization of G4s by PhpC modulates the G4 landscapes in a far more focused manner with upregulation of 295 proteins, mostly involved in RNA transactions as well, thus mirroring the effects of PDS. Our study is the first of its kind to report the extent of G4-associated cellular circuitries in human cells by systematically pitting the effect of G4 stabilization against destabilization in a direct and unbiased manner.
Collapse
Affiliation(s)
- Vijay Kumar M J
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France
| | - Zi Wang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ellery Wheeler
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Nitin Tandon
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France.
| | - Andrey S Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
4
|
Mitteaux J, Monchaud D. Protocol for cellular RNA G-quadruplex profiling using G4RP.v2. STAR Protoc 2024; 5:103480. [PMID: 39661503 PMCID: PMC11697541 DOI: 10.1016/j.xpro.2024.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
The isolation of G-quadruplexes (G4s) from human cells using specific molecular tools constitutes an invaluable step forward in uncovering the biology of these higher-order DNA and RNA structures. Here, we present an improved version of the G4-RNA precipitation (G4RP) protocol developed to identify RNA G4s from human cancer cells. We describe steps for cell treatment and lysis, chemoprecipitation of G4s using TASQ tools, go/no-go steps, and quantitative reverse-transcription PCR (RT-qPCR) quantification and analysis. For complete details on the use and execution of this protocol, please refer to Mitteaux et al.1.
Collapse
Affiliation(s)
- Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302, 9 Avenue Alain Savary, 21078 Dijon, France.
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302, 9 Avenue Alain Savary, 21078 Dijon, France.
| |
Collapse
|
5
|
Chaudhuri R, Prasanth T, Biswas D, Mandal S, Dash J. Combating multidrug-resistance in S. pneumoniae: a G-quadruplex binding inhibitor of efflux pump and its bio-orthogonal assembly. NAR MOLECULAR MEDICINE 2024; 1:ugae005. [PMID: 38694210 PMCID: PMC11059089 DOI: 10.1093/narmme/ugae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Antibiotic resistance poses a significant global health threat, necessitating innovative strategies to combat multidrug-resistant bacterial infections. Streptococcus pneumoniae, a pathogen responsible for various infections, harbors highly conserved DNA quadruplexes in genes linked to its pathogenesis. In this study, we introduce a novel approach to counter antibiotic resistance by stabilizing G-quadruplex structures within the open reading frames of key resistance-associated genes (pmrA, recD and hsdS). We synthesized An4, a bis-anthracene derivative, using Cu(I)-catalyzed azide-alkyne cycloaddition, which exhibited remarkable binding and stabilization of the G-quadruplex in the pmrA gene responsible for drug efflux. An4 effectively permeated multidrug-resistant S. pneumoniae strains, leading to a substantial 12.5-fold reduction in ciprofloxacin resistance. Furthermore, An4 downregulated pmrA gene expression, enhancing drug retention within bacterial cells. Remarkably, the pmrA G-quadruplex cloned into the pET28a(+) plasmid transformed into Escherichia coli BL21 cells can template Cu-free bio-orthogonal synthesis of An4 from its corresponding alkyne and azide fragments. This study presents a pioneering strategy to combat antibiotic resistance by genetically reducing drug efflux pump expression through G-quadruplex stabilization, offering promising avenues for addressing antibiotic resistance.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Debasmita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Subhranshu Mandal
- Laboratory Medicine, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700156, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| |
Collapse
|
6
|
Rota Sperti F, Mitteaux J, Zell J, Pipier A, Valverde IE, Monchaud D. The multivalent G-quadruplex (G4)-ligands MultiTASQs allow for versatile click chemistry-based investigations. RSC Chem Biol 2023; 4:456-465. [PMID: 37415864 PMCID: PMC10320843 DOI: 10.1039/d3cb00009e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Chemical biology hinges on multivalent molecular tools that can specifically interrogate and/or manipulate cellular circuitries from the inside. The success of many of these approaches relies on molecular tools that make it possible to visualize biological targets in cells and then isolate them for identification purposes. To this end, click chemistry has become in just a few years a vital tool in offering practically convenient solutions to address highly complicated biological questions. We report here on two clickable molecular tools, the biomimetic G-quadruplex (G4) ligands MultiTASQ and azMultiTASQ, which benefit from the versatility of two types of bioorthogonal chemistry, CuAAC and SPAAC (the discovery of which was very recently awarded the Nobel Prize of chemistry). These two MultiTASQs are used here to both visualize G4s in and identify G4s from human cells. To this end, we developed click chemo-precipitation of G-quadruplexes (G4-click-CP) and in situ G4 click imaging protocols, which provide unique insights into G4 biology in a straightforward and reliable manner.
Collapse
Affiliation(s)
- Francesco Rota Sperti
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Jérémie Mitteaux
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Joanna Zell
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Angélique Pipier
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Ibai E Valverde
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
7
|
Feng Y, He Z, Luo Z, Sperti FR, Valverde IE, Zhang W, Monchaud D. Side-by-side comparison of G-quadruplex (G4) capture efficiency of the antibody BG4 versus the small-molecule ligands TASQs. iScience 2023; 26:106846. [PMID: 37250775 PMCID: PMC10212998 DOI: 10.1016/j.isci.2023.106846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
The search for G-quadruplex (G4)-forming sequences across the genome is motivated by their involvement in key cellular processes and their putative roles in dysregulations underlying human genetic diseases. Sequencing-based methods have been developed to assess the prevalence of DNA G4s genome wide, including G4-seq to detect G4s in purified DNA (in vitro) using the G4 stabilizer PDS, and G4 chromatin immunoprecipitation sequencing (G4 ChIP-seq) to detect G4s in in situ fixed chromatin (in vivo) using the G4-specific antibody BG4. We recently reported on G4-RNA precipitation and sequencing (G4RP-seq) to assess the in vivo prevalence of RNA G4 landscapes transcriptome wide using the small molecule BioTASQ. Here, we apply this technique for mapping DNA G4s in plants (rice) and compare the efficiency of this new technique, G4-DNA precipitation and sequencing, G4DP-seq, to that of BG4-DNA-IP-seq that we developed for mapping of DNA G4s in rice using BG4. By doing so, we compare the G4 capture ability of small-sized ligands (BioTASQ and BioCyTASQ) versus the antibody BG4.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| | - Ibai E. Valverde
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, P.R. China
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, Université de Bourgogne, Dijon, France
| |
Collapse
|
8
|
Craig JS, Melidis L, Williams HD, Dettmer SJ, Heidecker AA, Altmann PJ, Guan S, Campbell C, Browning DF, Sigel RKO, Johannsen S, Egan RT, Aikman B, Casini A, Pöthig A, Hannon MJ. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks. J Am Chem Soc 2023. [PMID: 37318835 DOI: 10.1021/jacs.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Monchaud D. Template-Assembled Synthetic G-Quartets (TASQs): multiTASQing Molecular Tools for Investigating DNA and RNA G-Quadruplex Biology. Acc Chem Res 2023; 56:350-362. [PMID: 36662540 DOI: 10.1021/acs.accounts.2c00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomimetics is defined as a "practice of making technological design that copies natural processes", with the idea that "nature has already solved the challenges we are trying to solve" (Cambridge Dictionary). The challenge we decided to address several years ago was the selective targeting of G quadruplexes (G4s) by small molecules (G4 ligands). Why? Because G4s, which are four-stranded DNA and RNA structures that fold from guanine (G)-rich sequences, are suspected to play key biological roles in human cells and diseases. Selective G4 ligands can thus be used as small-molecule modulators to gain a deep understanding of cell circuitry where G4s are involved, thus complying with the very definition of chemical biology (Stuart Schreiber) applied here to G4 biology. How? Following a biomimetic approach that hinges on the observation that G4s are stable secondary structures owing to the ability of Gs to self-associate to form G quartets, and then of G quartets to self-stack to form the columnar core of G4s. Therefore, using a synthetic G quartet as a G4 ligand represents a unique example of biomimetic recognition of G4s.We formulated this hypothesis more than a decade ago, stepping on years of research on Gs, G4s, and G4 ligands. Our approach led to the design, synthesis, and use of a broad family of synthetic G quartets, also referred to as TASQs for template-assembled synthetic G quartets (John Sherman). This quest led us across various chemical lands (organic and supramolecular chemistry, chemical biology, and genetics), along a route on which every new generation of TASQ was a milestone in the growing portfolio of ever smarter molecular tools to decipher G4 biology. As discussed in this Account, we detail how and why we successively develop the very first prototypes of (i) biomimetic ligands, which interact with G4s according to a bioinspired, like-likes-like interaction between two G quartets, one from the ligand, the other from the G4; (ii) smart ligands, which adopt their active conformation only in the presence of their G4 targets; (iii) twice-as-smart ligands, which act as both smart ligands and smart fluorescent probes, whose fluorescence is triggered (turned on) upon interaction with their G4 targets; and (iv) multivalent ligands, which display additional functionalities enabling the detection, isolation, and identification of G4s both in vitro and in vivo. This quest led us to gather a panel of 14 molecular tools which were used to investigate the biology of G4s at a cellular level, from basic optical imaging to multiomics studies.
Collapse
Affiliation(s)
- David Monchaud
- ICMUB, CNRS UMR6302, Université de Bourgogne, 21078 Dijon, France
| |
Collapse
|