1
|
Shimizu N, Kanemitsu S, Umemura R, Yashiro T, Kawabata R, Nishimura K, Kawasaki S, Morita K, Aoi T, Maruyama T. Mechanistic Insights into the Apoptosis of Cancer Cells Induced by a Kinase-Responsive Peptide Amphiphile. Chemistry 2025; 31:e202403658. [PMID: 39876747 DOI: 10.1002/chem.202403658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells. C16-(EY)3 selectively induced apoptosis in cancer cells that overexpressed tyrosine kinase. The self-assembly of peptide amphiphiles on the endoplasmic reticulum (ER) membrane reduced the ER membrane fluidity and triggered ER stress. The mechanism of the cancer cell death induced by C16-(EY)3 was shown to involve phosphorylation by tyrosine kinase, ER stress induction, and the subsequent activation of caspase-4, -12, and -9, which ultimately triggered apoptosis through the activation of caspase-3 and -7. In vivo studies further validated the antitumor efficacy of C16-(EY)3, as transcutaneous administration of the peptide amphiphile inhibited tumor growth in mice. This study elucidated the mechanism of apoptosis induced by the peptide amphiphile, indicating the potential of peptide amphiphiles as organelle-targeting cancer therapeutics and providing a novel strategy for the development of selective and potent anticancer drugs.
Collapse
Affiliation(s)
- Natsumi Shimizu
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Sayuki Kanemitsu
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Riku Umemura
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tomoko Yashiro
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Ryoko Kawabata
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kanon Nishimura
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Shinya Kawasaki
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunokicho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
2
|
Xu W, Qin X, Liu Y, Chen J, Wang Y. Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery. Curr Drug Deliv 2025; 22:374-386. [PMID: 37496133 DOI: 10.2174/1567201820666230726151607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Because of low immunogenicity, ease of modification, and inherent biosafety, peptides have been well recognized as vehicles to deliver therapeutic agents to targeted regions with improved pharmacokinetic characteristics. Enzyme-responsive self-assembled peptides (ERSAPs) show superiority over their naive forms due to their enhanced targeting efficacy and long-retention property. In this review, we have summarized recent advances in the therapeutic application of ERSAPs, mainly focusing on their self-therapeutic properties and potential as vehicles to deliver different drugs.
Collapse
Affiliation(s)
- Wentao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jun Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuguang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
3
|
Guo J, Tan W, Xu B. Enzymatic self-assembly of short peptides for cell spheroid formation. J Mater Chem B 2024; 12:11210-11217. [PMID: 39370899 PMCID: PMC11540748 DOI: 10.1039/d4tb01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cell spheroids, including organoids, serve as a valuable link between in vitro systems and in vivo animal models, offering powerful tools for studying cell biology in a three-dimensional environment. However, existing methods for generating cell spheroids are time consuming or difficult to scale up for large-scale production. Our recent study has revealed that transcytotic peptide assemblies, which transform from nanoparticles to nanofibers by enzymatic reactions, can create an intercellular fibril/gel, accelerating cell spheroid formation from a 2D cell culture or a cell suspension. While this finding presents an alternative approach for generating cell spheroids, the specific structural features required for efficient cell spheroid formation remain unclear. Based on our observation that a phosphotetrapeptide with a biphenyl cap at its N-terminus enables cell spheroid formation, we produced 10 variants of the original peptide. The variants explored modifications to the peptide backbone, length, electronic properties of the biphenyl capping group, and the type of phosphorylated amino acid residue. We then evaluated their ability for inducing cell spheroid formation. Our analysis revealed that, among the tested molecules, peptides with C-terminal phosphotyrosine, low critical micelle concentration, and dephosphorylation-guided nanoparticle to nanofiber morphological transition were the most effective in inducing the formation of cell spheroids. This work represents the first example to correlate the thermodynamic properties (e.g., self-assembling ability) and kinetic behavior (e.g., enzymatic dephosphorylation) of peptides with the efficacy of controlling intercellular interaction, thus offering valuable insights into using enzymatic self-assembly to generate peptide assemblies for biological applications.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
4
|
Watanabe D, Hiroshima M, Yasui M, Ueda M. Single molecule tracking based drug screening. Nat Commun 2024; 15:8975. [PMID: 39420015 PMCID: PMC11486946 DOI: 10.1038/s41467-024-53432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
The single-molecule tracking of transmembrane receptors in living cells has provided significant insights into signaling mechanisms, such as mobility and clustering upon their activation/inactivation, making it a potential screening method for drug discovery. Here we show that single-molecule tracking-based screening can be used to explore compounds both detectable and undetectable by conventional methods for disease-related receptors. Using an automated system for a fast large-scale single-molecule analysis, we screen for epidermal growth factor receptor (EGFR) from 1134 of FDA approved drugs. The 18 hit compounds include all EGFR-targeted tyrosine kinase inhibitors (TKIs) in the library that suppress any phosphorylation-dependent mobility shift of EGFR, proving the concept of this approach. The remaining hit compounds are not reported as EGFR-targeted drugs and do not inhibit EGF-induced EGFR phosphorylation. These non-TKI compounds affect the mobility and/or clustering of EGFR without EGF and induce EGFR internalization, to impede EGFR-dependent cell growth. Thus, single-molecule tracking provides an alternative modality for discovering therapeutics on various receptor functions with previously untargeted mechanisms.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| | - Michio Hiroshima
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan.
| | | | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
5
|
Tan W, Zhang Q, Lee M, Lau W, Xu B. Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2373045. [PMID: 39011064 PMCID: PMC11249168 DOI: 10.1080/14686996.2024.2373045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interactions. This review briefly introduces the development of using enzymatic reactions to control intermolecular interactions for generating artificial nanoarchitectures in a cellular environment. We begin the discussion with the early examples and uniqueness of enzymatically controlled self-assembly. Then, we describe examples of generating intracellular nanostructures and their relevant applications. Subsequently, we discuss cases of forming nanostructures on the cell surface via enzymatic reactions. Following that, we highlight the use of enzymatic reactions for creating intercellular nanostructures. Finally, we provide a summary and outlook on the promises and future direction of this strategy. Our aim is to give an updated introduction to the use of enzymatic reaction in regulating intermolecular interactions, a phenomenon ubiquitous in biology but relatively less explored by chemists and materials scientists. Our goal is to stimulate new developments in this simple and versatile approach for addressing societal needs.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Mikki Lee
- Department of Chemistry, Brandeis University, Waltham, MA, USA
- Department of Pharmacy and Pharmaceutical Sciences, National University ofSingapore, Singapore
| | - William Lau
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| |
Collapse
|
6
|
Morita K, Yashiro T, Aoi T, Imamura R, Ohtake T, Yoshizaki N, Maruyama T. Microplate-Based Cryopreservation of Adherent-Cultured Human Cell Lines Using Amino Acids and Proteins. ACS Biomater Sci Eng 2024; 10:2442-2450. [PMID: 38530812 DOI: 10.1021/acsbiomaterials.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.
Collapse
Affiliation(s)
- Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomoko Yashiro
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Aoi
- Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| | - Ryutaro Imamura
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tomoyuki Ohtake
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Norihiro Yoshizaki
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Abstract
Higher-order or supramolecular protein assemblies, usually regulated by enzymatic reactions, are ubiquitous and essential for cellular functions. This evolutionary fact has provided a rigorous scientific foundation, as well as an inspiring blueprint, for exploring supramolecular assemblies of man-made molecules that are responsive to biological cues as a novel class of therapeutics for biomedicine. Among the emerging man-made supramolecular structures, peptide assemblies, formed by enzyme reactions or other stimuli, have received most of the research attention and advanced most rapidly.In this Account, we will review works that apply enzyme-instructed self-assembly (EISA) to generate intracellular peptide assemblies for developing a new kind of biomedicine, especially in the field of novel cancer nanomedicines and modulating cell morphogenesis. As a versatile and cell-compatible approach, EISA can generate nondiffusive peptide assemblies locally; thus, it provides a unique approach to target subcellular organelles with exceptional cell selectivity. We have arranged this Account in the following way: after introducing the concept, simplicity, and uniqueness of EISA, we discuss the EISA-formed intracellular peptide assemblies, including artificial filaments, in the cell cytosol. Then, we describe the representative examples targeting subcellular organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and the nucleus, by enzyme-instructed intracellular peptide assemblies for potential cancer therapeutics. After that, we highlight the recent exploration of the transcytosis of peptide assemblies for controlling cell morphogenesis. Finally, we provide a brief outlook of enzyme-instructed intracellular peptide assemblies. This Account aims to illustrate the promise of EISA-generated intracellular peptide assemblies in understanding diseases, controlling cell behaviors, and developing new therapeutics from a class of less explored molecular entities, which are substrates of enzymes and become building blocks of self-assembly after the enzymatic reactions.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|