1
|
Ion BF, Aboelnga MM, Gauld JW. QM/MM investigation of the discriminatory pre-transfer editing mechanism operated by Lysyl-tRNA synthetase. J Biomol Struct Dyn 2025; 43:4004-4012. [PMID: 38197420 DOI: 10.1080/07391102.2023.2301054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that remarkable facilitate the aminoacylation process during translation. With a high fidelity, the mischarged tRNA is prevented through implementing pre- and post-transfer proofreading mechanisms. For instance, Lysine-tRNA synthetase charges the native substrate, lysine, to its cognate tRNA. In spite of the great structural similarity between lysine to the noncognate and toxic ornithine, with the side chain of lysine being only one methylene group longer, LysRS is able to achieve this discrimination with a high efficiency. In this work, the hybrid quantum mechanics/molecular mechanics (QM/MM) investigation was applied to probe the pre-transfer editing mechanism catalyzed by lysyl-tRNA synthetase to reject the noncognte aminoacyl, L-ornityl (Orn), compared to the cognate substrate, L-lysyl. Particularly, the self-cyclization pre-transfer editing mechanism was explored for the two substrates. The substrate-assisted self-cyclization editing of Orn-AMP, where its phosphate moiety acts as the catalytic base, is found to be the rate-determining step with an energy barrier of 101.2 kJ mol-1. Meanwhile, the corresponding rate-limiting pathway for the native Lys-AMP lies at 140.2 kJ mol-1. This observation clearly indicated the infeasibility of this catalytic scenario in the presence of the native substrate. Interestingly, a thermodynamically favorable cyclic product of -92.9 kJ mol-1 with respect to the aminoacyl reactant complex demonstrated evidence of a successful pre-transfer editing. This reaction resulted in the discharge of the on-cognate -ornithine derivative from LysU's active site. These valuable mechanistic insights are valuable to enrich our knowledge of this extremely efficient and specific catalytic machinery of LysRS.
Collapse
Affiliation(s)
- Bogdan F Ion
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
2
|
Jaber Sathik Rifayee SB, Thomas MG, Christov CZ. Revealing the nature of the second branch point in the catalytic mechanism of the Fe(ii)/2OG-dependent ethylene forming enzyme. Chem Sci 2025:d4sc08378d. [PMID: 40134662 PMCID: PMC11931567 DOI: 10.1039/d4sc08378d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Ethylene-forming enzyme (EFE) has economic importance due to its ability to catalyze the formation of ethylene and 3-hydroxypropionate (3HP). Understanding the catalytic mechanism of EFE is essential for optimizing the biological production of these important industrial chemicals. In this study, we implemented molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) to elucidate the pathways leading to ethylene and 3HP formation. Our results suggest that ethylene formation occurs from the propion-3-yl radical intermediate rather than the (2-carboxyethyl)carbonato-Fe(ii) (EFIV) intermediate, which conclusively acts as a precursor for 3HP formation. The results also explain the role of the hydrophobic environment surrounding the 2OG binding site in stabilizing the propion-3-yl radical, which defines their conversion to either ethylene or 3HP. Our simulations on the A198L EFE variant, which produces more 3HP than wild-type (WT) EFE based on experimental observations, predict that the formation of the EFIV intermediate was more favored than WT. Also, MD simulations on the EFIV intermediate in both WT and A198L EFE predicted that the water molecules approach the Fe center, which suggests the role of water molecules in the breakdown of the EFIV intermediate. QM/MM simulations on the EFIV intermediate of WT and A198L EFE predicted that the Fe-bound water molecule could provide a proton for the 3HP formation from EFIV. The study underscores the critical influence of the enzyme's hydrophobic environment and second coordination sphere residues in determining product distribution between ethylene and 3HP. These mechanistic insights lay a foundation for targeted enzyme engineering, aiming to improve the selectivity and catalytic efficiency of EFE in biological ethylene and 3HP production.
Collapse
Affiliation(s)
| | - Midhun George Thomas
- Department of Chemistry, Michigan Technological University Houghton MI-49931 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton MI-49931 USA
| |
Collapse
|
3
|
Kandasamy N, Palanivel T, Selvaraj V, Dhanasekaran A. Designing lysyl hydroxylase inhibitors for oral submucous fibrosis - Insights from molecular dynamics. Int J Biol Macromol 2025; 295:139304. [PMID: 39743109 DOI: 10.1016/j.ijbiomac.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially. Virtual screening of the Zinc database was employed to identify new leads. They were docked using Glide. Lead1 complex exhibits a notably superior docking score compared to other leads. This complex hinders iron stabilization by engaging with the HXD..Xn..H motif and competitively inhibiting 2OG binding at the catalytic site via interactions with Cys691 and Arg729 by forming a salt bridge. Molecular dynamics simulations over a 500 ns time scale and molecular mechanics Poisson-Boltzmann surface area calculations illustrate the stable binding of Leads. DCCA analysis finds the coordinated residue motions and the influence of the second coordinating sphere in long-range interactions. In-silico results were validated by quantifying the amount of collagen in zebrafish through histology and hydroxyproline assay. These findings demonstrated a reduction in collagen deposition in the treated samples compared to the positive control. This computational study unveiled insights into how leads may impede collagen lysine hydroxylation and potentially impact collagen-related processes.
Collapse
Affiliation(s)
| | | | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | | |
Collapse
|
4
|
Devadas S, Thomas MG, Rifayee SBJS, Varada B, White W, Sommer E, Campbell K, Schofield CJ, Christov CZ. Origins of Catalysis in Non-Heme Fe(II)/2-Oxoglutarate-Dependent Histone Lysine Demethylase KDM4A with Differently Methylated Histone H3 Peptides. Chemistry 2025; 31:e202403989. [PMID: 39487094 DOI: 10.1002/chem.202403989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Histone lysine demethylase 4 A (KDM4A), a non-heme Fe(II)/2-oxoglutarate (2OG) dependent oxygenase that catalyzes the demethylation of tri-methylated lysine residues at the 9, 27, and 36 positions of histone H3 (H3 K9me3, H3 K27me3, and H3 K36me3). These methylated residues show contrasting transcriptional roles; therefore, understanding KDM4A's catalytic mechanisms with these substrates is essential to explain the factors that control the different sequence-dependent demethylations. In this study, we use molecular dynamics (MD)-based combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate determinants of KDM4A catalysis with H3 K9me3, H3 K27me3 and H3 K36me3 substrates. In KDM4A-H3(5-14)K9me3 and KDM4A-H3(23-32)K27me3 ferryl complexes, the O-H distance positively correlates with the activation barrier of the rate-limiting step, however in the KDM4A-H3(32-41)K36me3, no direct one-to-one relationship was found implying that the synergistic effects between the geometric parameters, second sphere interactions and the intrinsic electric field contribute for the effective catalysis for this substrate. The intrinsic electric field along the Fe-O bond changes between the three complexes and shows a positive correlation with the HAT activation barrier, suggesting that modulating electric field can be used for fine engineering KDM catalysis with a specific substrate. The results reveal how KDM4A uses a combination of strategies to enable near equally efficient demethylation of different H3Kme3 residues.
Collapse
Affiliation(s)
- Sudheesh Devadas
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Midhun George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | | | - Bhargav Varada
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Walter White
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| | - Ethan Sommer
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI-49931, United States
| | - Kylin Campbell
- Department of Biological Sciences, Michigan Technological University, Houghton, MI-49931, United States
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, United States
| |
Collapse
|
5
|
Thomas M, Jaber Sathik Rifayee SB, Christov CZ. How Do Variants of Residues in the First Coordination Sphere, Second Coordination Sphere, and Remote Areas Influence the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate Dependent Ethylene-Forming Enzyme? ACS Catal 2024; 14:18550-18569. [PMID: 39722885 PMCID: PMC11668244 DOI: 10.1021/acscatal.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches. It is crucial to incorporate an accurate and comprehensive description of the integrative and multidimensional effects of the protein environment to enhance the redesign strategy in metalloenzymes, particularly in EFE. This involves understanding the role of the second coordination sphere (SCS) and long-range (LR) interacting residues, correlated motions, electronic structure, intrinsic electric field (IntEF), as well as the stabilization of transition states and reaction intermediates. In this study, we employ a molecular dynamics-based quantum mechanics/molecular mechanics approach to examine the integrative effects of the protein environment on reactions catalyzed by EFE variants from the first coordination sphere (FCS, D191E), SCS (A198V and R171A) and LR (E215A). The study uncovers how substitutions at different positions in EFE similarly impact the ethylene-forming reaction while posing distinct effects on the hydroxylation reaction. Results predict the effect of the variants in controlling the 2OG coordination mode in the Fe(II) center. Specifically, the study suggests that D191E uniquely prefers transitioning from an off-line to an in-line 2OG coordination mode before dioxygen binding. However, studies on the 2OG flip in the presence of off-line approaching dioxygen and dioxygen binding in the D191E variant indicate that the 2OG flip might not be feasible in the 5C Fe(II) state. Calculations show the possibility of a hydrogen atom transfer (HAT)-assisted oxygen flip in EFE and its variants (other than D191E). MD simulations elucidate the characteristic dynamic change in the α7 region in the D191E variant that might contribute to its increased hydroxylation reaction. Results indicate the possibility of forming an in-line ferryl from the IM2 (Fe(III)-partial bond intermediate) in the D191E variant. This alternative pathway from IM2 may also exist in WT EFE and other variants, which are yet to be explored. The study also delineates the impact of substitutions on the electronic structure and IntEF. Overall, the calculations support the idea that understanding the integrative and multidimensional effects of the protein environment on the reactions catalyzed by EFE variants provides the basics for improved enzyme redesign protocols of EFE to increase ethylene production. The results of this study will also contribute to the development of alternate redesign strategies for other metalloenzymes.
Collapse
Affiliation(s)
- Midhun
George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
Ju D, Modi V, Khade RL, Zhang Y. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Commun Chem 2024; 7:279. [PMID: 39613908 DOI: 10.1038/s42004-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate. Results show that electron-deficient substrate ethyl acrylate has a much higher barrier than the electron-rich styrene. For styrene, the predicted barrier trend is consistent with experimentally used heme analogue cofactors, which can significantly reduce barriers. For ethyl acrylate, while the best non-native axial ligand only marginally improves the reactivity versus the native histidine model, a couple of computationally studied macrocycles can dramatically reduce barriers to the level comparable to styrene. These results will facilitate the development of better biocatalysts in this area.
Collapse
Affiliation(s)
- Dongrun Ju
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Vrinda Modi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.
| |
Collapse
|
7
|
Vargas S, Chaturvedi SS, Alexandrova AN. Machine-Learning Prediction of Protein Function from the Portrait of Its Intramolecular Electric Field. J Am Chem Soc 2024. [PMID: 39374428 DOI: 10.1021/jacs.4c09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We introduce a machine learning framework designed to predict enzyme functionality directly from the heterogeneous electric fields inherent to protein active sites. We apply this method to a curated data set of heme-iron oxidoreductases, spanning three enzyme classes: monooxygenases, peroxidases, and catalases. Conventional analysis, focused on simplistic, point electric fields along the Fe-O bond, is shown to be inadequate for accurate activity prediction. Our model demonstrates that the enzyme's heterogeneous 3-D electric field, alone, can accurately predict its function, without relying on additional protein-specific information. Through feature selection, we uncover key electric field components that not only validate previous studies but also underscore the crucial role of multiple components beyond the traditionally emphasized electric field along the Fe-O bond in heme enzymes. Furthermore, by integrating protein dynamics, principal component analysis, clustering, and QM/MM calculations, we reveal that while dynamic complexities in protein structures can obscure predictions, the model still retains its accuracy. This research significantly advances our understanding of how protein scaffolds possess signature electric fields tailored to their functions at the active site. Moreover, it presents a novel electrostatics-based tool to harness these signature electric fields for predicting enzyme function.
Collapse
Affiliation(s)
- Santiago Vargas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Krishnan A, Waheed SO, Melayikandy S, LaRouche C, Paik M, Schofield CJ, Karabencheva-Christova TG. Effects of Clinical Mutations in the Second Coordination Sphere and Remote Regions on the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate-Dependent Aspartyl Hydroxylase AspH. Chemphyschem 2024; 25:e202400303. [PMID: 38839574 DOI: 10.1002/cphc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Aspartyl/asparaginyl hydroxylase (AspH) catalyzes the post-translational hydroxylations of vital human proteins, playing an essential role in maintaining their biological functions. Single-point mutations in the Second Coordination Sphere (SCS) and long-range (LR) residues of AspH have been linked to pathological conditions such as the ophthalmologic condition Traboulsi syndrome and chronic kidney disease (CKD). Although the clinical impacts of these mutations are established, there is a critical knowledge gap regarding their specific atomistic effects on the catalytic mechanism of AspH. In this study, we report integrated computational investigations on the potential mechanistic implications of four mutant forms of human AspH with clinical importance: R735W, R735Q, R688Q, and G434V. All the mutant forms exhibited altered binding interactions with the co-substrate 2-oxoglutarate (2OG) and the main substrate in the ferric-superoxo and ferryl complexes, which are critical for catalysis, compared to the wild-type (WT). Importantly, the mutations strongly influence the energetics of the frontier molecular orbitals (FMOs) and, thereby, the activation energies for the hydrogen atom transfer (HAT) step compared to the WT AspH. Insights from our study can contribute to enzyme engineering and the development of selective modulators for WT and mutants of AspH, ultimately aiding in treating cancers, Traboulsi syndrome and, CKD.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Sreerag Melayikandy
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Ciara LaRouche
- Department of Chemical Engineering, Michigan Techno, Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Meredith Paik
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | | |
Collapse
|
9
|
Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q. PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers. EPIGENOMES 2024; 8:36. [PMID: 39311138 PMCID: PMC11417953 DOI: 10.3390/epigenomes8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| |
Collapse
|
10
|
Hardy FJ, Quesne MG, Gérard EF, Zhao J, Ortmayer M, Taylor CJ, Ali HS, Slater JW, Levy CW, Heyes DJ, Bollinger JM, de Visser SP, Green AP. Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code. ACS Catal 2024; 14:11584-11590. [PMID: 39114090 PMCID: PMC11301626 DOI: 10.1021/acscatal.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The ability to introduce noncanonical amino acids as axial ligands in heme enzymes has provided a powerful experimental tool for studying the structure and reactivity of their FeIV=O ("ferryl") intermediates. Here, we show that a similar approach can be used to perturb the conserved Fe coordination environment of 2-oxoglutarate (2OG) dependent oxygenases, a versatile class of enzymes that employ highly-reactive ferryl intermediates to mediate challenging C-H functionalizations. Replacement of one of the cis-disposed histidine ligands in the oxygenase VioC with a less electron donating N δ-methyl-histidine (MeHis) preserves both catalytic function and reaction selectivity. Significantly, the key ferryl intermediate responsible for C-H activation can be accumulated in both the wildtype and the modified protein. In contrast to heme enzymes, where metal-oxo reactivity is extremely sensitive to the nature of the proximal ligand, the rates of C-H activation and the observed large kinetic isotope effects are only minimally affected by axial ligand replacement in VioC. This study showcases a powerful tool for modulating the coordination sphere of nonheme iron enzymes that will enhance our understanding of the factors governing their divergent activities.
Collapse
Affiliation(s)
- Florence J. Hardy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Matthew G. Quesne
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, Oxon OX11
0FA, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Emilie F. Gérard
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jingming Zhao
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Mary Ortmayer
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christopher J. Taylor
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Hafiz S. Ali
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jeffrey W. Slater
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Colin W. Levy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Derren J. Heyes
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - J. Martin Bollinger
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sam P. de Visser
- Department
of Chemical Engineering & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Anthony P. Green
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
11
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
12
|
Ni J, Zhuang J, Shi Y, Chiang YC, Cheng GJ. Discovery and substrate specificity engineering of nucleotide halogenases. Nat Commun 2024; 15:5254. [PMID: 38898020 PMCID: PMC11186838 DOI: 10.1038/s41467-024-49147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
C2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications. In this study, we report two halogenases capable of halogenating 2'-deoxyguanosine monophosphate (dGMP), thereby expanding the family of nucleotide halogenases. Computational studies reveal that nucleotide specificity is regulated by the binding pose of the phosphate group. Based on these findings, we successfully engineered the substrate specificity of these halogenases by mutating second-sphere residues. This work expands the toolbox of nucleotide halogenases and provides insights into the regulation mechanism of nucleotide specificity.
Collapse
Affiliation(s)
- Jie Ni
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Yiming Shi
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
13
|
Thomas M, Jaber Sathik Rifayee SB, Chaturvedi SS, Gorantla KR, White W, Wildey J, Schofield CJ, Christov CZ. The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A. Inorg Chem 2024; 63:10737-10755. [PMID: 38781256 PMCID: PMC11168414 DOI: 10.1021/acs.inorgchem.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.
Collapse
Affiliation(s)
- Midhun
George Thomas
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | | | - Shobhit S. Chaturvedi
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Koteswara Rao Gorantla
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Walter White
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Jon Wildey
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12, Mansfield Road, Oxford OX1 5JJ, U.K.
| | - Christo Z. Christov
- Department
of Chemistry, and Department of Chemical Engineering, Michigan
Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
14
|
Chaturvedi SS, Vargas S, Ajmera P, Alexandrova AN. Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field. J Am Chem Soc 2024. [PMID: 38848547 DOI: 10.1021/jacs.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
To unravel why computational design fails in creating viable enzymes, while directed evolution (DE) succeeds, our research delves into the laboratory evolution of protoglobin. DE has adapted this protein to efficiently catalyze carbene transfer reactions. We show that the previously proposed enhanced substrate access and binding alone cannot account for increased yields during DE. The 3D electric field in the entire active site is tracked through protein dynamics, clustered using the affinity propagation algorithm, and subjected to principal component analysis. This analysis reveals notable changes in the electric field with DE, where distinct field topologies influence transition state energetics and mechanism. A chemically meaningful field component emerges and takes the lead during DE and facilitates crossing the barrier to carbene transfer. Our findings underscore intrinsic electric field dynamic's influence on enzyme function, the ability of the field to switch mechanisms within the same protein, and the crucial role of the field in enzyme design.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Santiago Vargas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Pujan Ajmera
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Messias A, Capece L, De Simone G, Coletta M, Ascenzi P, Estrin DA. Mechanism of Peroxynitrite Interaction with Ferric M. tuberculosis Nitrobindin: A Computational Study. Inorg Chem 2024; 63:9907-9918. [PMID: 38754069 DOI: 10.1021/acs.inorgchem.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.
Collapse
Affiliation(s)
- Andresa Messias
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Luciana Capece
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, I-00146 Roma, Italy
| | - Massimo Coletta
- IRCCS Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, I-00146 Roma, Italy
- Accademia Nazionale dei Lincei, Via della Lungara, 10, 00165 Roma, Italy
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
16
|
Cao Y, Hay S, de Visser SP. An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer. J Am Chem Soc 2024; 146:11726-11739. [PMID: 38636166 PMCID: PMC11066847 DOI: 10.1021/jacs.3c14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
17
|
Ali HS, de Visser SP. QM/MM Study Into the Mechanism of Oxidative C=C Double Bond Cleavage by Lignostilbene-α,β-Dioxygenase. Chemistry 2024; 30:e202304172. [PMID: 38373118 DOI: 10.1002/chem.202304172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The enzymatic biosynthesis of fragrance molecules from lignin fragments is an important reaction in biotechnology for the sustainable production of fine chemicals. In this work we investigated the biosynthesis of vanillin from lignostilbene by a nonheme iron dioxygenase using QM/MM and tested several suggested proposals via either an epoxide or dioxetane intermediate. Binding of dioxygen to the active site of the protein results in the formation of an iron(II)-superoxo species with lignostilbene cation radical. The dioxygenase mechanism starts with electrophilic attack of the terminal oxygen atom of the superoxo group on the central C=C bond of lignostilbene, and the second-coordination sphere effects in the substrate binding pocket guide the reaction towards dioxetane formation. The computed mechanism is rationalized with thermochemical cycles and valence bond schemes that explain the electron transfer processes during the reaction mechanism. Particularly, the polarity of the protein and the local electric field and dipole moments enable a facile electron transfer and an exergonic dioxetane formation pathway.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
18
|
Krishnan A, Waheed SO, Varghese A, Cherilakkudy FH, Schofield CJ, Karabencheva-Christova TG. Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chem Sci 2024; 15:3466-3484. [PMID: 38455014 PMCID: PMC10915816 DOI: 10.1039/d3sc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford OX1 3TA Oxford UK
| | | |
Collapse
|
19
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
20
|
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN. From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics. Chem Sci 2023; 14:10997-11011. [PMID: 37860658 PMCID: PMC10583697 DOI: 10.1039/d3sc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| |
Collapse
|
21
|
Jaber Sathik Rifayee SB, Chaturvedi SS, Warner C, Wildey J, White W, Thompson M, Schofield CJ, Christov CZ. Catalysis by KDM6 Histone Demethylases - A Synergy between the Non-Heme Iron(II) Center, Second Coordination Sphere, and Long-Range Interactions. Chemistry 2023; 29:e202301305. [PMID: 37258457 PMCID: PMC10526731 DOI: 10.1002/chem.202301305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
KDM6A (UTX) and KDM6B (JMJD3) are human non-heme Fe(II) and 2-oxoglutarate (2OG) dependent JmjC oxygenases that catalyze the demethylation of trimethylated lysine 27 in the N-terminal tail of histone H3, a post-translational modification that regulates transcription. A Combined Quantum Mechanics/ Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) study on the catalytic mechanism of KDM6A/B reveals that the transition state for the rate-limiting hydrogen atom transfer (HAT) reaction in KDM6A catalysis is stabilized by polar (Asn217) and aromatic (Trp369)/non-polar (Pro274) residues in contrast to KDM4, KDM6B and KDM7 demethylases where charged residues (Glu, Arg, Asp) are involved. KDM6A employs both σ- and π-electron transfer pathways for HAT, whereas KDM6B employs the σ-electron pathway. Differences in hydrogen bonding of the Fe-chelating Glu252(KDM6B) contribute to the lower energy barriers in KDM6B vs. KDM6A. The study reveals a dependence of the activation barrier of the rebound hydroxylation on the Fe-O-C angle in the transition state of KDM6A. Anti-correlation of the Zn-binding domain with the active site residues is a key factor distinguishing KDM6A/B from KDM7/4s. The results reveal the importance of communication between the Fe center, second coordination sphere, and long-range interactions in catalysis by KDMs and, by implication, other 2OG oxygenases.
Collapse
Affiliation(s)
| | | | - Cait Warner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI-49931, USA
| | - Jon Wildey
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI-49931, USA
| | - Walter White
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Martin Thompson
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Christopher J. Schofield
- Chemistry Research laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| |
Collapse
|
22
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
23
|
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, Solov’yov IA. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a. ACS OMEGA 2023; 8:26425-26436. [PMID: 37521624 PMCID: PMC10373462 DOI: 10.1021/acsomega.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Maja Hanić
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Georg Manthey
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Henrik Mouritsen
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Miriam Liedvogel
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- MPRG
Behavioural Genomics, Max Planck Institute
for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Department
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
24
|
Maghsoud Y, Dong C, Cisneros GA. Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study. J Chem Inf Model 2023; 63:4190-4206. [PMID: 37319436 PMCID: PMC10405278 DOI: 10.1021/acs.jcim.3c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Chaturvedi SS, Thomas MG, Simahudeen BJSR, White W, Wildey J, Warner C, Schofield CJ, Hu J, Hausinger RP, Karabencheva-Christova TG, Christov CZ. Dioxygen Binding Is Controlled by the Protein Environment in Non-heme Fe II and 2-Oxoglutarate Oxygenases: A Study on Histone Demethylase PHF8 and an Ethylene-Forming Enzyme. Chemistry 2023; 29:e202300138. [PMID: 36701641 PMCID: PMC10305803 DOI: 10.1002/chem.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme FeII /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line FeIII -OO⋅- intermediate in PHF8 and the off-line FeIII -OO⋅- intermediate in EFE.
Collapse
Affiliation(s)
| | - Midhun George Thomas
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | | | - Walter White
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Jon Wildey
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Cait Warner
- Department of Biology, Michigan Technological University, Houghton, MI 49931, USA
| | - Christopher J. Schofield
- The Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Mansfield Road, OX1 3TA, United Kingdom
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
26
|
Wang Y, Zhang Y, Li Z, Wang J. JMJD8 Functions as a Novel AKT1 Lysine Demethylase. Int J Mol Sci 2022; 24:460. [PMID: 36613903 PMCID: PMC9820096 DOI: 10.3390/ijms24010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
JMJD8 is a protein from the JMJD family that only has the JmjC domain. Studies on the function of JMJD8 indicate that JMJD8 is involved in signaling pathways, including AKT/NF-κB, and thus affects cell proliferation and development. Here, we reported the activity of JMJD8 as a non-histone demethylase. We investigated the demethylation of JMJD8 on trimethylated lysine of AKT1 in vivo and in vitro using trimethylated AKT1 short peptide and AKT1 protein, and we tracked the regulation of JMJD8 on AKT1 activity at the cellular level. The results showed that JMJD8, a mini lysine demethylase, altered AKT1 protein function via changing its degree of methylation.
Collapse
Affiliation(s)
- Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zehua Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|