1
|
Górecki M, Gallo E, Bellucci L, Bottaro G, Armelao L, Samaritani S, Marchetti F, Di Bari L, Labella L, Zinna F. Circularly Polarized Luminescence From Spontaneous Symmetry Breaking in a Bimetallic Eu-Al Complex. Chemistry 2025; 31:e202500750. [PMID: 40136319 DOI: 10.1002/chem.202500750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
The emergence of optically active functional compounds through spontaneous chiral symmetry breaking is a rare but intriguing phenomenon with relevance of both practical and fundamental interest. Here we show that a racemic Eu-Al compound, bearing only non-chiral ligands, forms a conglomerate upon crystallization. Single crystals of the compound are electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) active. Moreover, we found that a significant enantiomeric excess (50%) of either enantiomer is present in each crystallization batch (non-racemic conglomerate). Such spontaneous symmetry breaking leads not only to optically active single enantiomorph crystals but to an overall solid bulk with significant ECD and CPL.
Collapse
Affiliation(s)
- Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw, Poland
| | - Elisa Gallo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Luca Bellucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Gregorio Bottaro
- ICMATE-CNR and INSTM, Dipartimento di Scienze Chimiche Università di Padova, via F. Marzolo 1, Padova, Italy
| | - Lidia Armelao
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali (DSCTM), Consiglio Nazionale delle Ricerche, Piazzale A. Moro 7, Roma, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, Padova, Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, Pisa, Italy
| |
Collapse
|
2
|
Capozzi MAM, Alvarez-Larena A, Piniella Febrer JF, Cardellicchio C. Investigation of the titanium-mediated catalytic enantioselective oxidation of aryl benzyl sulfides containing heterocyclic groups. RSC Adv 2024; 14:35105-35113. [PMID: 39497765 PMCID: PMC11533983 DOI: 10.1039/d4ra07088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024] Open
Abstract
Our enantioselective oxidation protocol, based upon hydroperoxides in the presence of a titanium/(S,S)-hydrobenzoin catalyst, was tested for the first time with aryl benzyl sulfides containing heterocyclic moieties (2-thienyl, 2-pyridyl and benzimidazolyl), two of them being connected with the blockbuster omeprazole drug. Good yields of enantiopure sulfoxides were obtained in most cases. Two exceptions of unsatisfactory enantioselectivity in the oxidation of benzimidazolyl sulfides are reported. However, one of them was solved by crystallization of an enantio-enriched mixture. The present work was supported also by X-ray diffraction analysis of some synthesized sulfoxides and by energetic calculation of the crystal structures. The unexpected result is that the crystal structures of the racemic mixture of the two problematic benzimidazolyl sulfoxides are composed of separate enantiomers (a conglomerate), an interesting result that could be exploited in the future for the separation of the enantiomers of these sulfoxides.
Collapse
Affiliation(s)
| | - Angel Alvarez-Larena
- Servei de Difracció de Raigs X, Universitat Autònoma de Barcelona 08193 Bellaterra, Cerdanyola del Vallès Barcelona Spain
| | - Joan F Piniella Febrer
- Departament de Geologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Cerdanyola del Vallès Barcelona Spain
| | - Cosimo Cardellicchio
- CNR ICCOM, Dipartimento di Chimica, Università di Bari via Orabona 4 70125 Bari Italy
| |
Collapse
|
3
|
Ghorai S, Natarajan R. Chiral Self-Sorting, Spontaneous Resolution, and Hierarchical Self-Assembly in Metal-Organic Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400842. [PMID: 38708784 DOI: 10.1002/smll.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The ability to collectively program chiral recognition and the hierarchical self-assembly of molecular and supramolecular building blocks into complex higher-order superstructures is a significant goal in supramolecular chemistry. Metal-organic cages are excellent model systems to examine chiral self-sorting and build hierarchical self-assembly. Herein, details on how limiting the conformational flexibility and incorporating hydrogen bonding functional groups in the ligands can influence chiral self-sorting and hierarchical self-assembly of metal-organic cages are reported. The urea-functionalized axially chiral bis-pyridyl ligands afford high-fidelity in chiral self-sorting in Pd2L4 cages, when they have fewer conformations. Ligand L1, with more conformations, affords mixture of heterochiral and homochiral cages (≈70:30). Among them, the heterochiral cage adopts unusual twisted conformation and self-assembles into 2D sheets, linked by anion coordination between urea and nitrate. Ligand L2, with fewer conformations, affords homochiral cages via high-fidelity chiral self-sorting. The choice of counter anions influences further self-sorting in the solid state: racemate with PF6 - and spontaneously resolves conglomerate with BF4 -. Urea-BF4 hydrogen bonding directs hierarchical self-assembly of the Pd2L4 metal-organic cages into super-cubic networks. The study introduces a new approach in hierarchical self-assembly of metal-organic cages into higher-order networks aided by hydrogen bonding anion coordination with functional ligands.
Collapse
Affiliation(s)
- Sandipan Ghorai
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Wang Z, Cao Z, Hao A, Xing P. Pnictogen bonding in imide derivatives for chiral folding and self-assembly. Chem Sci 2024; 15:6924-6933. [PMID: 38725497 PMCID: PMC11077576 DOI: 10.1039/d4sc00554f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as β-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
5
|
Sui J, Wang N, Wang J, Huang X, Wang T, Zhou L, Hao H. Strategies for chiral separation: from racemate to enantiomer. Chem Sci 2023; 14:11955-12003. [PMID: 37969602 PMCID: PMC10631238 DOI: 10.1039/d3sc01630g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Chiral separation has become a crucial topic for effectively utilizing superfluous racemates synthesized by chemical means and satisfying the growing requirements for producing enantiopure chiral compounds. However, the remarkably close physical and chemical properties of enantiomers present significant obstacles, making it necessary to develop novel enantioseparation methods. This review comprehensively summaries the latest developments in the main enantioseparation methods, including preparative-scale chromatography, enantioselective liquid-liquid extraction, crystallization-based methods for chiral separation, deracemization process coupling racemization and crystallization, porous material method and membrane resolution method, focusing on significant cases involving crystallization, deracemization and membranes. Notably, potential trends and future directions are suggested based on the state-of-art "coupling" strategy, which may greatly reinvigorate the existing individual methods and facilitate the emergence of cross-cutting ideas among researchers from different enantioseparation domains.
Collapse
Affiliation(s)
- Jingchen Sui
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
- School of Chemical Engineering and Technology, Hainan University Haikou 570228 China
| |
Collapse
|
6
|
Noble-Terán ME, Cruz JM, Cruz-Rosas HI, Buhse T, Micheau JC. A Complex Reaction Network Model for Spontaneous Mirror Symmetry Breaking in Viedma Deracemizations. Chemphyschem 2023; 24:e202300318. [PMID: 37428998 DOI: 10.1002/cphc.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Attrition-enhanced chiral symmetry breaking in crystals, known as Viedma deracemization, is a promising method for converting racemic solid phases into enantiomerically pure ones under non-equilibrium conditions. However, many aspects of this process remain unclear. In this study, we present a new investigation into Viedma deracemization using a comprehensive kinetic rate equation continuous model based on classical primary nucleation theory, crystal growth, and Ostwald ripening. Our approach employs a fully microreversible kinetic scheme with a size-dependent solubility following the Gibbs-Thomson rule. To validate our model, we use data from a real NaClO3 deracemization experiment. After parametrization, the model shows spontaneous mirror symmetry breaking (SMSB) under grinding. Additionally, we identify a bifurcation scenario with a lower and upper limit of the grinding intensity that leads to deracemization, including a minimum deracemization time within this window. Furthermore, this model uncovers that SMSB is caused by multiple instances of concealed high-order autocatalysis. Our findings provide new insights into attrition-enhanced deracemization and its potential applications in chiral molecule synthesis and understanding biological homochirality.
Collapse
Affiliation(s)
- María E Noble-Terán
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Hugo I Cruz-Rosas
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Thomas Buhse
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier 31062, Toulouse Cedex, France
| |
Collapse
|
7
|
García de la Concepción J, Flores-Jiménez M, Cuccia LA, Light ME, Viedma C, Cintas P. Revisiting Homochiral versus Heterochiral Interactions through a Long Detective Story of a Useful Azobis-Nitrile and Puzzling Racemate. CRYSTAL GROWTH & DESIGN 2023; 23:5719-5733. [PMID: 37547876 PMCID: PMC10402293 DOI: 10.1021/acs.cgd.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Indexed: 08/08/2023]
Abstract
This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and meso compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization. Our results report on the X-ray crystal structures of all stereoisomers for the first time, along with further details on enantiodiscrimination and the always intriguing arguments accounting for the stability of homochiral versus heterochiral crystal aggregates. To this end, metadynamic (MTD) simulations on stereoisomer molecular aggregates were performed to capture the incipient nucleation events at the picosecond time scale. This analysis sheds light on the driving homochiral aggregation of ACPA enantiomers.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Mirian Flores-Jiménez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Louis A. Cuccia
- Department
of Chemistry and Biochemistry, Concordia
University, 7141 Sherbrooke
Street West, H4B 1R6 Montreal, Canada
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cristóbal Viedma
- Department
of Crystallography and Mineralogy, University
Complutense, 28040 Madrid, Spain
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
8
|
Kelly CT, Jordan R, Felton S, Müller‐Bunz H, Morgan GG. Spontaneous Chiral Resolution of a Mn III Spin-Crossover Complex with High Temperature 80 K Hysteresis. Chemistry 2023; 29:e202300275. [PMID: 37037023 PMCID: PMC10946779 DOI: 10.1002/chem.202300275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.
Collapse
Affiliation(s)
- Conor T. Kelly
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Ross Jordan
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Solveig Felton
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Helge Müller‐Bunz
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Grace G. Morgan
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| |
Collapse
|
9
|
Walsh MP, Barclay JA, Begg CS, Xuan J, Kitching MO. Conglomerate Crystallization in the Cambridge Structural Database (2020-2021). CRYSTAL GROWTH & DESIGN 2023; 23:2837-2844. [PMID: 37038395 PMCID: PMC10080650 DOI: 10.1021/acs.cgd.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Conglomerate crystals are materials capable of undergoing spontaneous resolution and were responsible for the discovery of molecular chirality. Their relevance to modern chemical and crystallographic sciences has been hindered by the difficulty in identifying and searching materials with this characteristic ability to spontaneously bias their own enantioenrichment. With the release of the November 2021 distribution of the Cambridge Structural Database (CSD) (version 5.43), a fresh quantity of chiral conglomerate crystals is expected to have been published in the CSD without identification. Indeed, no crystals in the CSD have been identified as a spontaneously resolving conglomerate crystal in their crystallographic information file since the 2019 release, despite the deposition of over 108,000 new crystal structures into the database over the same time period. A manual inspection of crystals deposited between 2020 and 2021 was conducted to identify 343 new chiral materials which exhibit conglomerate crystallization behavior. It is hoped that the continued manual curation of this list will aid those in the crystallographic and synthetic communities to study and exploit this spontaneous enantioenrichment behavior.
Collapse
Affiliation(s)
- Mark P. Walsh
- Process
Research and Development, Carbogen Amcis
Ltd., 303 Clayton Lane, Manchester, M11 4SX, U.K.
| | - James A. Barclay
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Callum S. Begg
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Jinyi Xuan
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| | - Matthew O. Kitching
- Department
of Chemistry, Durham University, Lower Mount Joy, South Rd., Durham, DH1 3LE, U.K.
| |
Collapse
|
10
|
van Dongen S, Ahlal I, Leeman M, Kaptein B, Kellogg RM, Baglai I, Noorduin WL. Chiral Amplification through the Interplay of Racemizing Conditions and Asymmetric Crystal Growth. J Am Chem Soc 2022; 145:436-442. [PMID: 36534614 PMCID: PMC9837840 DOI: 10.1021/jacs.2c10584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amplification of enantiomeric excesses (ee) is routinely observed during chiral crystallization of conglomerate crystals for which the enantiomers undergo racemization in solution. Although routes comprising a combination of crystal growth and dissolution are frequently used to obtain enantiopure molecules, crystal growth by itself has rather been considered as a source of enantiomeric erosion and discounted as a potential source of enantiomeric amplification. Counterintuitively, we here demonstrate striking enantiomeric amplification during crystal growth for clopidogrel and tert-leucine precursors. Based on a mechanistic framework, we identify that the interplay between racemization and crystal growth rates elicits this surprising effect. The asymmetric amplification of the solid-phase ee can be enhanced by increasing the mass of grown material relative to the product such that small amounts of seeds of only 60% ee already result in virtually exclusive growth of the majority phase. These results impact our understanding of asymmetric amplification mechanisms during crystallization and offer a tangible basis for practical production of enantiopure molecules.
Collapse
Affiliation(s)
| | - Imane Ahlal
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Michel Leeman
- Symeres, Kadijk 3, 9747 ATGroningen, The Netherlands
| | | | | | - Iaroslav Baglai
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands,
| | - Willem L. Noorduin
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands,Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands,
| |
Collapse
|