1
|
Lauridsen PJ, Kim YJ, Marron DP, Zhu JS, Waymouth RM, Du Bois J. Ligand Oxidation Activates a Ruthenium(II) Precatalyst for C-H Hydroxylation. J Am Chem Soc 2024; 146:23067-23074. [PMID: 39134028 DOI: 10.1021/jacs.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
A new class of Ru-sulfonamidate precatalysts for sp3 C-H hydroxylation is described along with a versatile process for assembling unique heteroleptic Ru(II) complexes. The latter has enabled structure-performance studies to identify an optimal precatalyst, 2h, bearing one 4,4'-di-tert-butylbipyridine (dtbpy) and one pyridylsulfonamidate ligand. Single-crystal X-ray analysis confirmed the structure and stereochemistry of this adduct. Catalytic hydroxylation reactions are conveniently performed in an aqueous, biphasic solvent mixture with 1 mol % 2h and ceric ammonium nitrate as the terminal oxidant and deliver oxidized products in yields ranging from 37 to 90%. A comparative mechanistic investigation of 2h against a related homoleptic precatalyst, [Ru(dtbpy)2(MeCN)2](OTf)2, convincingly establishes that the former generates one or more surprisingly long-lived active species under the reaction conditions, thus accounting for the high turnover numbers. Structure-performance, kinetics, mass spectrometric, and electrochemical analyses reveal that ligand oxidation is a prerequisite for catalyst activation. Our findings sharply contrast a large body of prior art showing that ligand oxidation is detrimental to catalyst function. We expect these results to stimulate future innovations in C-H oxidation research.
Collapse
Affiliation(s)
- Paul J Lauridsen
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Yeon Jung Kim
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Daniel P Marron
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Jie S Zhu
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
2
|
McArthur G, Docherty JH, Hareram MD, Simonetti M, Vitorica-Yrezabal IJ, Douglas JJ, Larrosa I. An air- and moisture-stable ruthenium precatalyst for diverse reactivity. Nat Chem 2024; 16:1141-1150. [PMID: 38570728 PMCID: PMC11230907 DOI: 10.1038/s41557-024-01481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Versatile, efficient and robust (pre)catalysts are pivotal in accelerating the discovery and optimization of chemical reactions, shaping diverse synthetic fields such as cross-coupling, C-H functionalization and polymer chemistry. Yet, their scarcity in certain domains has hindered the advancement and adoption of new applications. Here we present a highly reactive air- and moisture-stable ruthenium precatalyst [(tBuCN)5Ru(H2O)](BF4)2, featuring a key exchangeable water ligand. This versatile precatalyst drives an array of transformations, including late-stage C(sp2)-H arylation, primary/secondary alkylation, methylation, hydrogen/deuterium exchange, C(sp3)-H oxidation, alkene isomerization and oxidative cleavage, consistently outperforming conventionally used ruthenium (pre)catalysts. The generality and applicability of this precatalyst is exemplified through the potential for rapid screening and optimization of photocatalytic reactions with a suite of in situ generated ruthenium photocatalysts containing hitherto unknown complexes, and through the rapid discovery of reactivities previously unreported for ruthenium. The diverse applicability observed is suggestive of a generic platform for reaction simplification and accelerated synthetic discovery that will enable broader applicability and accessibility to state-of-the-art ruthenium catalysis.
Collapse
Affiliation(s)
- Gillian McArthur
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Jamie H Docherty
- Department of Chemistry, University of Manchester, Manchester, UK
- Department of Chemistry, Lancaster University, Lancaster, UK
| | | | - Marco Simonetti
- Department of Chemistry, University of Manchester, Manchester, UK
- bp, Low Carbon Innovation Centre, Saltend Chemicals Park, Hull, UK
| | | | - James J Douglas
- Department of Chemistry, University of Manchester, Manchester, UK
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
4
|
Schmid JR, Rennefeld ORH, Wiesner A, Jansen M, Riedel S. Formation of Peroxynitrite, [O-N-O-O] -, via a Cascade of Reactions between Ozonide and Ammonia. Chemistry 2024; 30:e202400585. [PMID: 38545825 DOI: 10.1002/chem.202400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 05/03/2024]
Abstract
We report on an unexpected reaction between ammonia and potassium ozonide dissolved in liq. NH3 resulting in the formation of peroxynitrite, [ONOO]-, which exclusively happens in the presence of a specific partially fluorinated aniline-based ammonium cation. High-resolution structural data of the peroxynitrite anion in cis-conformation have been obtained. We further studied this molecule anion by single crystal Raman spectroscopy. The cis and trans isomers of peroxynitrite were analysed computationally with respect to their relative energies, the cis-trans transition barrier and their decomposition pathways to the nitrate anion. By experimentally examining cations decorated with fluorine ligands to different degrees, we demonstrate that fluorine specific interactions play a crucial role in the unexpected formation of peroxynitrite and as a conspicuously structure directing factor for the underlying crystalline solid phases, exhibiting distinct micro-separations of fluorine and hydrogen enriched regions.
Collapse
Affiliation(s)
- Jonas R Schmid
- Anorganische Chemie, Institut für Chemie Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Oliver R H Rennefeld
- Anorganische Chemie, Institut für Chemie Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Anja Wiesner
- Anorganische Chemie, Institut für Chemie Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Martin Jansen
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Sebastian Riedel
- Anorganische Chemie, Institut für Chemie Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| |
Collapse
|
5
|
Bai PB, Durie A, Wang GW, Larrosa I. Unlocking regioselective meta-alkylation with epoxides and oxetanes via dynamic kinetic catalyst control. Nat Commun 2024; 15:31. [PMID: 38167324 PMCID: PMC10761682 DOI: 10.1038/s41467-023-44219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Regioselective arene C-H bond alkylation is a powerful tool in synthetic chemistry, yet subject to many challenges. Herein, we report the meta-C-H bond alkylation of aromatics bearing N-directing groups using (hetero)aromatic epoxides as alkylating agents. This method results in complete regioselectivity on both the arene as well as the epoxide coupling partners, cleaving exclusively the benzylic C-O bond. Oxetanes, which are normally unreactive, also participate as alkylating reagents under the reaction conditions. Our mechanistic studies reveal an unexpected reversible epoxide ring opening process undergoing catalyst-controlled regioselection, as key for the observed high regioselectivities.
Collapse
Affiliation(s)
- Peng-Bo Bai
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Alastair Durie
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Igor Larrosa
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
6
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|