1
|
Bentley K, Hareram MD, Wang GW, Millman AAV, Perez-Ortega I, Nichols LM, Bories CC, Walker LE, Woodward AW, Golovanov AP, Natrajan LS, Larrosa I. Bis-Cycloruthenated Complexes in Visible Light-Induced C-H Alkylation with Epoxides. J Am Chem Soc 2025; 147:5035-5042. [PMID: 39901642 PMCID: PMC11826993 DOI: 10.1021/jacs.4c14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Bis-cycloruthenated complexes (BCRCs) of the type [Ru(N^C)2L2] are proposed to be key reactive intermediates in the Ru(II)-catalyzed directed C-H functionalization of arenes. While the exceptional ground state reactivity of BCRCs toward a number of electrophiles has been explored, their reactivity upon photoexcitation is still unknown. Herein, we report studies on the photoexcitation of BCRCs that establish their capability to access chemically useful excited states. Remarkably, photoexcited BCRCs demonstrate greatly increased reactivity toward the electron transfer processes required for alkyl halide activation, overcoming current limitations of their ground-state reactivity. We have demonstrated this reactivity by expanding upon the current chemical space occupied by Ru-catalyzed C-H functionalization to include ortho-alkylation with epoxides.
Collapse
Affiliation(s)
- Kurt Bentley
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mishra Deepak Hareram
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gang-Wei Wang
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- State
Key Laboratory of Applied Organic Chemistry & College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Alexander A. V. Millman
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ignacio Perez-Ortega
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Luke M. Nichols
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Cassandre C. Bories
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lauren E. Walker
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Adam W. Woodward
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Louise S. Natrajan
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Igor Larrosa
- Department
of Chemistry, School of Natural Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Rashid A, Mondal S, Musha Islam AS, Mondal S, Ghosh P. Naphthalene Diimide and Bis-Heteroleptic Ru(II) Complex-Based Hybrid Molecule with 3-in-1 Functionalities. Chem Asian J 2024:e202400724. [PMID: 39166360 DOI: 10.1002/asia.202400724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Multipurpose applications of a newly developed homobimetallic Ru(II) complex, Ru-NDI[PF6]4, which incorporates 1,10-phenanthroline and triazole-pyridine ligands and linked via a (-CH2-)3 spacer to the reputed anion-π interacting NDI system, are described. Solution-state studies of the bimetallic complex, including EPR, PL, UV-vis, and NMR experiments, reveal two sequential one-electron transfers to the NDI unit, generating NDI⋅- and NDI2- in the presence of F- selectively. This process inhibits the primary electron transfer from Ru(II) to the NDI unit, thereby allowing the 3MLCT-based emission of the complex to be recovered, resulting in a corresponding ten-fold increase in luminescence intensity. DFT and TD-DFT computational studies further elucidate the experimentally observed absorption spectra of the complex. Secondly, CT-DNA binding studies with the complex are performed using various spectroscopic analyses such as UV-vis, PL, and CD. Comparative DNA binding studies employing EB and molecular docking reveal that the binding with CT-DNA occurs through both intercalative and groove binding modalities. Thirdly, the photocatalytic activities of the complex towards C-C, C-N, and C-O bond formation in organic cross-coupling reactions, including the amidation of α-keto acids to amines and the oxidation of alcohol to aldehydes, are also demonstrated.
Collapse
Affiliation(s)
- Ambreen Rashid
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
- Department of Chemistry, Ramsaday College, Amta, Howrah, West Bengal, 711401, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
3
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
4
|
Wang J, Gu J, Zou JY, Zhang MJ, Shen R, Ye Z, Xu PX, He Y. Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks. Nat Commun 2024; 15:3254. [PMID: 38627395 PMCID: PMC11021481 DOI: 10.1038/s41467-024-47404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
The past century has witnessed a large number of reports on the Z/E isomerization of alkenes. However, the vast majority of them are still limited to the isomerization of di- and tri-substituted alkenes. The stereospecific Z/E isomerization of tetrasubstituted alkenes remains to be an underdeveloped area, thus lacking in a stereodivergent synthesis of axially chiral alkenes. Herein we report the atroposelective synthesis of tetrasubstituted alkene analogues by asymmetric allylic substitution-isomerization, followed by their Z/E isomerization via triplet energy transfer photocatalysis. In this regard, the stereodivergent synthesis of axially chiral N-vinylquinolinones is achieved efficiently. Mechanistic studies indicate that the benzylic radical generation and distribution are two key factors for preserving the enantioselectivities of axially chiral compounds.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jia-Yu Zou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Meng-Jie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ping-Xun Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
5
|
Dam D, Lagerweij NR, Janmaat KM, Kok K, Bouwman E, Codée JDC. Organic Dye-Sensitized Nitrene Generation: Intermolecular Aziridination of Unactivated Alkenes. J Org Chem 2024; 89:3251-3258. [PMID: 38358354 PMCID: PMC10913034 DOI: 10.1021/acs.joc.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Aziridines are important structural motifs and intermediates, and several synthetic strategies for the direct aziridination of alkenes have been introduced. However, many of these strategies require an excess of activated alkene, suffer from competing side-reactions, have limited functional group tolerance, or involve precious transition metal-based catalysts. Herein, we demonstrate the direct aziridination of alkenes by combining sulfonyl azides as a triplet nitrene source with a catalytic amount of an organic dye functioning as photosensitizer. We show how the nature of the sulfonyl azide, in combination with the triplet-excited state energy of the photosensitizer, affects the aziridination yield and provide a mechanistic rationale to account for the observed dependence of the reaction yield on the nature of the organic dye and sulfonyl azide reagents. The optimized reaction conditions enable the aziridination of structurally diverse and complex alkenes, carrying various functional groups, with the alkene as the limiting reagent.
Collapse
Affiliation(s)
- Dennis Dam
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Nathan R. Lagerweij
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Katharina M. Janmaat
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Ken Kok
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Elisabeth Bouwman
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| |
Collapse
|
6
|
D’Avino C, Gutiérrez S, Feldhaus MJ, Tomás-Gamasa M, Mascareñas JL. Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis. J Am Chem Soc 2024; 146:2895-2900. [PMID: 38277674 PMCID: PMC10859955 DOI: 10.1021/jacs.3c13647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Performing abiotic synthetic transformations in live cell environments represents a new, promising approach to interrogate and manipulate biology and to uncover new types of biomedical tools. We now found that photocatalytic bond-forming reactions can be added to the toolbox of bioorthogonal synthetic chemistry. Specifically, we demonstrate that exogenous styryl aryl azides can be converted into indoles inside living mammalian cells under photocatalytic conditions.
Collapse
Affiliation(s)
- Cinzia D’Avino
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sara Gutiérrez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Max J. Feldhaus
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Yang Y, Liang J, Li W, Yang W, Wang C, Zhang X, Fang WH, Guo Z, Chen X. Mechanistic Understanding and Reactivity Analyses for the Photochemistry of Disubstituted Tetrazoles. J Phys Chem A 2023; 127:4115-4124. [PMID: 37133205 DOI: 10.1021/acs.jpca.3c01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The photolysis of tetrazoles has undergone extensive research. However, there are still some problems to be solved in terms of mechanistic understanding and reactivity analyses, which leaves room for theoretical calculations. Herein, multiconfiguration perturbation theory at the CASPT2//CASSCF level was employed to account for electron correction effects involved in the photolysis of four disubstituted tetrazoles. Based on calculations of vertical excitation properties and evaluations of intersystem crossing (ISC) efficiencies in the Frank-Condon region, the combination of space and electronic effects is found in maximum-absorption excitation. Two types of ISC (1ππ* → 3nπ*, 1ππ* → 3ππ*) are determined in disubstituted tetrazoles, and the obtained rates follow the El-Sayed rule. Through mapping three representative types of minimum energy profiles for the photolysis of 1,5-, and 2,5-disubstituted tetrazoles, a conclusion can be drawn that the photolysis of tetrazoles exhibits reactivity characteristic of bond-breaking selectivity. Kinetic evaluations show that the photogeneration of singlet imidoylnitrene operates predominately over that in the triplet state, which can be confirmed by a double-well model in the triplet potential energy surface of 1,5-disubstituted tetrazole. Similar mechanistic explorations and reactivity analyses were also applied to the photolysis of 2,5-disubstituted tetrazole to unveil fragmentation patterns of nitrile imine generation. All computational efforts allow us to better understand the photoreactions of disubstituted tetrazoles and to provide useful strategies for regulating their unique reactivity.
Collapse
Affiliation(s)
- Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaorui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|