1
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
2
|
Everly ME, Emehiser RG, Hrdlicka PJ. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Org Biomol Chem 2025; 23:619-628. [PMID: 39412680 PMCID: PMC11482323 DOI: 10.1039/d4ob01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Development of robust oligonucleotide-based probe technologies, capable of recognizing specific regions of double-stranded DNA (dsDNA) targets, continues to attract considerable attention due to the promise of tools for modulation of gene expression, diagnostic agents, and new modalities against genetic diseases. Our laboratory pursues the development of various strand-invading probes. These include Invader probes, i.e., double-stranded oligonucleotide probes with one or more +1 interstrand zipper arrangements of intercalator-functionalized nucleotides like 2'-O-(pyren-1-yl)methyl-RNA monomers, and chimeric Invader/γPNA probes, i.e., heteroduplex probes between individual Invader strands and complementary γPNA strands. Here we report on the biophysical properties and dsDNA-recognition characteristics of a new class of chimeric probes-chimeric Invader/LNA probes-which are comprised of densely modified Invader strands and fully modified complementary LNA strands. The chimeric Invader/LNA probes form labile and distorted heteroduplexes, due to an apparent incompatibility between intercalating pyrene moieties and LNA strands. In contrast, the individual Invader and LNA strands form very stable duplexes with complementary DNA, which provides the driving force for near-stoichiometric recognition of model double-stranded DNA targets with single base-pair accuracy. The distinctive properties of chimeric Invader/LNA probes unlock exciting possibilities in molecular biology, and diagnostic and therapeutic fields.
Collapse
Affiliation(s)
- Michaela E Everly
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Raymond G Emehiser
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| | - Patrick J Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA.
| |
Collapse
|
3
|
Shibata M, Shoji O, Aiba Y. Recognition of mismatched sites in double-stranded DNA by a pair of partially noncomplementary peptide nucleic acids. CHEM LETT 2024; 53:upae234. [PMID: 39677325 PMCID: PMC11640769 DOI: 10.1093/chemle/upae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
We have successfully achieved efficient recognition of mismatched sites in double-stranded DNA through the formation of an invasion complex by using partially noncomplementary peptide nucleic acids (PNAs). Owing to mismatches between 2 PNAs used for invasion, the undesired PNA/PNA duplex, which inhibits invasion complex formation, was destabilized. This approach overcame an inherent challenge in PNA invasion, in particular, undesired PNA/PNA duplex formation resulting from PNA complementarity, thereby enhancing overall invasion efficiency.
Collapse
Affiliation(s)
- Masanari Shibata
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
4
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
5
|
López-Tena M, Winssinger N. Impact of charges on the hybridization kinetics and thermal stability of PNA duplexes. Org Biomol Chem 2024; 22:5759-5767. [PMID: 38920402 PMCID: PMC11253249 DOI: 10.1039/d4ob00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Peptide nucleic acid (PNA) is a prominent artificial nucleic acid mimetic and modifications at the γ-position of the peptidic backbone are known to further enhance the desirable properties of PNA in terms of duplex stability. Here, we leveraged a propargyl ether modification at this position for late stage functionalization of PNA to obtain positively charged (cationic amino and guanidinium groups), negatively charged (anionic carboxylate and alkyl phosphonate groups) and neutral (PEG) PNAs to assess the impact of these charges on DNA : PNA and PNA : PNA duplex formation. Thermal stability analysis findings concurred with prior studies showing PNA : DNA duplexes are moderately more stable with cationic PNAs than anionic PNAs at physiological salt concentrations. We show that this effect is derived predominantly from differences in the association kinetics. For PNA : PNA duplexes, anionic PNAs were found to form the most stable duplexes, more stable than neutral PNA : PNA duplexes.
Collapse
Affiliation(s)
- Miguel López-Tena
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland.
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Lukina MV, Zhdanova PV, Koval VV. Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase. Curr Issues Mol Biol 2024; 46:4119-4132. [PMID: 38785521 PMCID: PMC11120029 DOI: 10.3390/cimb46050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.
Collapse
Affiliation(s)
- Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Tepper O, Appella DH, Zheng H, Dzikowski R, Yavin E. A Biotinylated cpFIT-PNA Platform for the Facile Detection of Drug Resistance to Artemisinin in Plasmodium falciparum. ACS Sens 2024; 9:1458-1464. [PMID: 38446423 PMCID: PMC10964236 DOI: 10.1021/acssensors.3c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.
Collapse
Affiliation(s)
- Odelia Tepper
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University of Jerusalem,
Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC),
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Hongchao Zheng
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC),
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, The institute for Medical
Research Israel - Canada, The Kuvin Center for the Study of Infectious
and Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112102, Israel
| | - Eylon Yavin
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University of Jerusalem,
Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
8
|
Mikame Y, Yamayoshi A. Recent Advancements in Development and Therapeutic Applications of Genome-Targeting Triplex-Forming Oligonucleotides and Peptide Nucleic Acids. Pharmaceutics 2023; 15:2515. [PMID: 37896275 PMCID: PMC10609763 DOI: 10.3390/pharmaceutics15102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recent developments in artificial nucleic acid and drug delivery systems present possibilities for the symbiotic engineering of therapeutic oligonucleotides, such as antisense oligonucleotides (ASOs) and small interfering ribonucleic acids (siRNAs). Employing these technologies, triplex-forming oligonucleotides (TFOs) or peptide nucleic acids (PNAs) can be applied to the development of symbiotic genome-targeting tools as well as a new class of oligonucleotide drugs, which offer conceptual advantages over antisense as the antigene target generally comprises two gene copies per cell rather than multiple copies of mRNA that are being continually transcribed. Further, genome editing by TFOs or PNAs induces permanent changes in the pathological genes, thus facilitating the complete cure of diseases. Nuclease-based gene-editing tools, such as zinc fingers, CRISPR-Cas9, and TALENs, are being explored for therapeutic applications, although their potential off-target, cytotoxic, and/or immunogenic effects may hinder their in vivo applications. Therefore, this review is aimed at describing the ongoing progress in TFO and PNA technologies, which can be symbiotic genome-targeting tools that will cause a near-future paradigm shift in drug development.
Collapse
Affiliation(s)
- Yu Mikame
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Asako Yamayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
Alavijeh NS, Serrano A, Peters MS, Wölper C, Schrader T. Design and Synthesis of Artificial Nucleobases for Sequence-Selective DNA Recognition within the Major Groove. Chem Asian J 2023; 18:e202300637. [PMID: 37616375 DOI: 10.1002/asia.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
We present the design and synthesis of artificial specific nucleobases, each one recognizing a single base pair within the major groove of duplex DNA. Computational calculations indicate that PNAs modified with these nucleobases enable the formation of highly stable triple helices with no sequence restrictions through multiple hydrogen bonding and π⋅⋅⋅π stacking interactions, without significantly widening the DNA double helix. New synthetic routes were developed to the structures of these fused heterocycles which have rarely been described in the literature. NMR titration experiments indicate specific hydrogen bonding at the Hoogsteen sites. The new building blocks allow the construction of four PNA monomers for each canonic base pair and their covalent connection to PNA oligomers. These can be designed complementary to any given DNA sequence. With high efficiency and relative simplicity of operation, the described methodologies and strategies hence form the basis for a new supramolecular ligand system targeting double-stranded DNA without strand invasion.
Collapse
Affiliation(s)
- Nahid S Alavijeh
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Alvaro Serrano
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Max S Peters
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Christoph Wölper
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|