1
|
Zhang J, Li J, Wen X, Liu L, Wei Q, Zhang P, Zhang JY, Zhao D, Lan K. Facile synthesis of mesoporous TiO 2 architectures with tunable configurations and nanometer precision. Nat Protoc 2025:10.1038/s41596-025-01175-3. [PMID: 40410622 DOI: 10.1038/s41596-025-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/17/2025] [Indexed: 05/25/2025]
Abstract
Titanium dioxide (TiO2) can be used in various applications such as catalysis, sensing, energy storage and conversion due to its semiconducting and crystalline properties. Ordered mesoporous TiO2 materials with high porosity values may further enable improvements in mass diffusion and surface access. However, despite the syntheses of TiO2-based bulks and polymorphs in the past, it remains challenging to control mesoscopic TiO2 morphology and dimension, pore shape and size, crystallographic phase and orientation. Here we describe a facile and robust solution-processed methodology for the preparation of a series of mesoporous TiO2 structures with highly tailored architectures at the atomic scale, nanoscale and mesoscale. The process relies on the preformation of flexible micelle hydrogels and the stepwise assembly, under specific conditions to synthesize diverse mesoporous TiO2 configurations with tunable parameters, such as bouquet-like spheres, chapped spheres, monolayered nanosheets, sandwich, vertical films and so on. The synthetic conditions and procedures are provided in detail to ensure the reproducibility of the experiments. The preparation of micelle hydrogels takes ~21 h, and the subsequent synthesis time to obtain versatile mesoporous TiO2 is usually ~50 h. Our protocol is suitable for researchers in nanomaterials, porous and inorganic materials and other related disciplines.
Collapse
Affiliation(s)
- Jingyu Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Xu Wen
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Lu Liu
- Laboratory of Advanced Materials, Department of Chemistry, College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Laboratory of Advanced Materials, Department of Chemistry, College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Jun-Ye Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
- Laboratory of Advanced Materials, Department of Chemistry, College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
| |
Collapse
|
2
|
Li J, Li R, Wang W, Lan K, Zhao D. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311460. [PMID: 38163922 DOI: 10.1002/adma.202311460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Ordered mesoporous crystalline frameworks (MCFs), which possess both functional frameworks and well-defined porosity, receive considerable attention because of their unique properties including high surface areas, large pore sizes, tailored porous structures, and compositions. Construction of novel crystalline mesoporous architectures that allows for rich accessible active sites and efficient mass transfer is envisaged to offer ample opportunities for potential energy-related applications. In this review, the rational synthesis, unique structures, and energy applications of MCFs are the main focus. After summarizing the synthetic approaches, an emphasis is placed on the delicate control of crystallites, mesophases, and nano-architectures by concluding basic principles and showing representative examples. Afterward, the currently fabricated components of MCFs such as metals, metal oxides, metal sulfides, and metal-organic frameworks are described in sequence. Further, typical applications of MCFs in rechargeable batteries, supercapacitors, electrocatalysis, and photocatalysis are highlighted. This review ends with the possible development and synthetic challenges of MCFs as well as a future prospect for high-efficiency energy applications, which underscores a pathway for developing advanced materials.
Collapse
Affiliation(s)
- Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Wendi Wang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Yin S, Liu L, Li J, Wu H, Lv Z, He Y, Zhang JY, Zhang P, Zhao Z, Zhao D, Lan K. Mesoporous TiO 2 Single-Crystal Particles from Controlled Crystallization-Driven Mono-Micelle Assembly as an Efficient Photocatalyst. J Am Chem Soc 2024; 146:1701-1709. [PMID: 38157406 DOI: 10.1021/jacs.3c12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mesoporous materials with crystalline frameworks have been widely explored in many fields due to their unique structure and crystalline feature, but accurate manipulations over crystalline scaffolds, mainly composed of uncontrolled polymorphs, are still lacking. Herein, we explored a controlled crystallization-driven monomicelle assembly approach to construct a type of uniform mesoporous TiO2 particles with atomically aligned single-crystal frameworks. The resultant mesoporous TiO2 single-crystal particles possess an angular shape ∼80 nm in diameter, good mesoporosity (a high surface area of 112 m2 g-1 and a mean pore size at 8.3 nm), and highly oriented anatase frameworks. By adjusting the evaporation rate during assembly, such a facile solution-processed strategy further enables the regulation of the particle size and mesopore size without the destruction of the oriented crystallites. Such a combination of ordered mesoporosity and crystalline orientation provides both effective mass and charge transportation, leading to a significant increase in the hydrogen generation rate. A maximum hydrogen evolution rate of 12.5 mmol g-1 h-1 can be realized, along with great stability under solar light. Our study is envisaged to extend the possibility of mesoporous single crystal growth to a range of functional ceramics and semiconductors toward advanced applications.
Collapse
Affiliation(s)
- Sixing Yin
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongfei Wu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yalin He
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jun-Ye Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Dongyuan Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
4
|
Fan L, Geng Q, Ma L, Wang C, Li JX, Zhu W, Shao R, Li W, Feng X, Yamauchi Y, Li C, Jiang L. Evoking C 2+ production from electrochemical CO 2 reduction by the steric confinement effect of ordered porous Cu 2O. Chem Sci 2023; 14:13851-13859. [PMID: 38075663 PMCID: PMC10699752 DOI: 10.1039/d3sc04840c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 06/10/2024] Open
Abstract
Selective conversion of carbon dioxide (CO2) to multi-carbon products (CO2-to-C2+) at high current densities is in essential demand for the practical application of the resultant valuable products, yet it remains challenging to conduct due to the lack of efficient electrocatalysts. Herein, three-dimensional ordered porous cuprous oxide cuboctahedra (3DOP Cu2O-CO) were designed and synthesized by a molecular fence-assisted hard templating approach. Capitalizing on the merits of interconnected and uniformly distributed pore channels, 3DOP Cu2O-CO exhibited outstanding electrochemical CO2-to-C2+ conversion, achieving faradaic efficiency and partial current density for C2+ products of up to 81.7% and -0.89 A cm-2, respectively, with an optimal formation rate of 2.92 mmol h-1 cm-2 under an applied current density of -1.2 A cm-2. In situ spectroscopy and simulation results demonstrated that the ordered pores of 3DOP Cu2O-CO can effectively confine and accumulate sufficient *CO adsorption during electrochemical CO2 reduction, which facilitates efficient dimerization for the formation of C2+ products. Furthermore, the 3DOP structure induces a higher local pH value, which not only enhances the C-C coupling reaction, but also suppresses competing H2 evolution.
Collapse
Affiliation(s)
- Longlong Fan
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qinghong Geng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Lian Ma
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Chengming Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jun-Xuan Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Wei Zhu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200433 China
| | - Xiao Feng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Cuiling Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 101407 China
| |
Collapse
|
5
|
Wamsley M, Zou S, Zhang D. Advancing Evidence-Based Data Interpretation in UV-Vis and Fluorescence Analysis for Nanomaterials: An Analytical Chemistry Perspective. Anal Chem 2023; 95:17426-17437. [PMID: 37972233 DOI: 10.1021/acs.analchem.3c03490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
UV-vis spectrophotometry and spectrofluorometry are indispensable tools in education, research, and industrial process controls with widespread applications in nanoscience encompassing diverse nanomaterials and fields. Nevertheless, the prevailing spectroscopic interpretations and analyses often exhibit ambiguity and errors, particularly evident in the nanoscience literature. This analytical chemistry Perspective focuses on fostering evidence-based data interpretation in experimental studies of materials' UV-vis absorption, scattering, and fluorescence properties. We begin by outlining common issues observed in UV-vis and fluorescence analysis. Subsequently, we provide a summary of recent advances in commercial UV-vis spectrophotometric and spectrofluorometric instruments, emphasizing their potential to enhance scientific rigor in UV-vis and fluorescence analysis. Furthermore, we propose potential avenues for future developments in spectroscopic instrumentation and measurement strategies, aiming to further augment the utility of optical spectroscopy in nano research for samples where optical complexity surpasses existing tools. Through a targeted focus on the critical issues related to UV-vis and fluorescence properties of nanomaterials, this Perspective can serve as a valuable resource for researchers, educators, and practitioners.
Collapse
Affiliation(s)
- Max Wamsley
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|