1
|
Xie Z, Li G, Xu W, Qu H, Zhang H, Ma C, Liu Y, Zhao Z, He Q, Bahojb Noruzi E, Cheng J, Periyasami G, Johnson RP, Li H. Chiral Drug Resolution Nanochannels Inspired by Mitochondrial Membranes. Anal Chem 2025; 97:6092-6100. [PMID: 40067159 DOI: 10.1021/acs.analchem.4c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Fungicides have been widely used in agricultural production; however, their extensive use has caused serious environmental pollution. Because of its high efficiency, low toxicity, and high selectivity, chiral fungicides can effectively reduce the amount of fungicides and increase the efficiency. Hence, how to efficiently separate the enantiomers of chiral drugs with different structures is of significant research value. The multispecific recognition and selective control of the mitochondrial membrane during the transfer of substances allow us to isolate and enrich monochiral pesticide enantiomers. In this study, based on the conical nanochannel modification by L-alanine pillar[5]arene, combined with the "synergistic effect of double-layer membrane channel" of the mitochondrial membrane in living organisms, three different modes of double-layer serial biomimetic nanochannels were constructed. At the same time, the effect of three different modes of the tandem double nanochannel on hand selectivity is investigated. The results demonstrate that the SOD-In double nanochannels exhibit the optimal separation performance. In the experiment, using current as the detection signal, the selectivity ratio of R-propranolol/S-propranolol was determined to be 43.67. The transmembrane transport selectivity coefficient α(R-/S-PPL) was 13.19 in the single molecule transmission experiment. This study provides an effective method for highly selective enrichment of single configuration chiral pesticides, promoting green agriculture development.
Collapse
Affiliation(s)
- Zhenyu Xie
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang Li
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cuiguang Ma
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuchao Liu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhihang Zhao
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Qiang He
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing Cheng
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Belfield, D04 N2E5 Dublin, Ireland
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Xiao H, Wang J, Tan H, Gan Y, Liu W, Zhang Y, Zhang Z, Yang J. Robust Heteronuclear Correlations for Sub-milligram Protein in Ultrafast Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2025; 147:6384-6389. [PMID: 39953646 DOI: 10.1021/jacs.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Proton-detected solid-state nuclear magnetic resonance (ssNMR) under ultrafast magic-angle spinning (MAS) has become a powerful tool for elucidating the structures of proteins with sub-milligram quantities, where establishing 13C-15N correlations is essential. However, traditional 13C-15N cross-polarization (CP), effective at lower MAS frequencies, suffers diminished efficiency under ultrafast MAS conditions. To overcome this limitation, we developed a robust method for selective polarization between insensitive nuclei (SPINE). This approach significantly enhances the heteronuclear 13C-15N correlation efficiency over CP, with gain factors of 1.75 for 13CA-15N and 1.9 and 13CO-15N transfers. SPINE's efficacy was validated on four diverse proteins: the microcrystalline β1 immunoglobulin binding domain of protein G (GB1), the large-conductance mechanosensitive ion channel from Methanosarcina acetivorans (MaMscL), fibrillar septum-forming protein (SepF), and the vertex protein of the β-carboxysome shell (CcmL). This enhancement can reduce the duration of current multidimensional experiments to about one-third of that using a single 13C-15N CP and to about one-tenth with dual 13C-15N transfers. Our findings underscore the practical utility and versatility of SPINE in ssNMR spectroscopy, making it a valuable approach for advancing structural biology studies of sub-milligram protein.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yuefang Gan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Tan H, Zhao W, Duan M, Zhao Y, Zhang Y, Xie H, Tong Q, Yang J. Native Cellular Membranes Facilitate Channel Activity of MscL by Enhancing Slow Collective Motions of Its Transmembrane Helices. J Am Chem Soc 2024; 146:31472-31485. [PMID: 39503730 DOI: 10.1021/jacs.4c07779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Mechanosensitive channels of large conductance (MscL) serve as a mechanoelectrical valve of cells in response to the membrane tension. The influence of membrane environments on the MscL channel activity and the underlying mechanism remains unclear. Herein, we developed a new sample preparation protocol that allows for the detection of high-quality 1H-detected solid-state NMR spectra of MscL in cellular membranes, enabling site-specific analysis of its dynamics. Dipolar order parameters and spin relaxation rates are measured for 51 residues of MscL in synthetic and native membranes. The dynamics data reveal that while MscL maintains a similar rigidity in both membrane environments, it exhibits enhanced slow collective motions in the native cellular membranes. Molecular dynamics simulations demonstrate the critical role of slow motions in the mechanosensitivity of MscL by promoting protein-membrane interactions. This study examines atomic-resolution dynamics of a membrane-protein in cellular membranes and provides novel insights into the functional significance of membrane-protein dynamics.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mojie Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Qiong Tong
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Xiao H, Zhao W, Zhang Y, Kang H, Zhang Z, Yang J. Selective correlations between aliphatic 13C nuclei in protein solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107730. [PMID: 38981307 DOI: 10.1016/j.jmr.2024.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cβ correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cβ correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline β1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cβ correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huimin Kang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
5
|
Zhang Z, Kato K, Tamaki H, Matsuki Y. Background signal suppression by opposite polarity subtraction for targeted DNP NMR spectroscopy on mixture samples. Phys Chem Chem Phys 2024; 26:9880-9890. [PMID: 38317640 DOI: 10.1039/d3cp06280e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel method for background signal suppression is introduced to improve the selectivity of dynamic nuclear polarization (DNP) NMR spectroscopy in the study of target molecules within complex mixtures. The method uses subtraction between positively and negatively enhanced DNP spectra, leading to an improved contrast factor, which is the ratio between the target and background signal intensities. The proposed approach was experimentally validated using a reverse-micelle system that confines the target molecules together with the polarizing agent, OX063 trityl. A substantial increase in the contrast factor was observed, and the contrast factor was optimized through careful selection of the DNP build-up time. A simulation study based on the experimental results provides insights into a strategy for choosing the appropriate DNP build-up time and the corresponding selectivity of the method. Further analysis revealed a broad applicability of the technique, encompassing studies from large biomolecules to surface-modified polymers, depending on the nuclear spin diffusion rate with a range of gyromagnetic ratios.
Collapse
Affiliation(s)
- Zhongliang Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken Kato
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Zhang Z, Zhao Q, Gong Z, Du R, Liu M, Zhang Y, Zhang L, Li C. Progress, Challenges and Opportunities of NMR and XL-MS for Cellular Structural Biology. JACS AU 2024; 4:369-383. [PMID: 38425916 PMCID: PMC10900494 DOI: 10.1021/jacsau.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The validity of protein structures and interactions, whether determined under ideal laboratory conditions or predicted by AI tools such as Alphafold2, to precisely reflect those found in living cells remains to be examined. Moreover, understanding the changes in protein structures and interactions in response to stimuli within living cells, under both normal and disease conditions, is key to grasping proteins' functionality and cellular processes. Nevertheless, achieving high-resolution identification of these protein structures and interactions within living cells presents a technical challenge. In this Perspective, we summarize the recent advancements in in-cell nuclear magnetic resonance (NMR) and in vivo cross-linking mass spectrometry (XL-MS) for studying protein structures and interactions within a cellular context. Additionally, we discuss the challenges, opportunities, and potential benefits of integrating in-cell NMR and in vivo XL-MS in future research to offer an exhaustive approach to studying proteins in their natural habitat.
Collapse
Affiliation(s)
- Zeting Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qun Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhou Gong
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ruichen Du
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yukui Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|