1
|
Glenister M, Mistarz U, Cook K, Stephenson J, Dickman M. Optimisation of Heated Electrospray Ionisation Parameters to Minimise In-Source Generated Impurities in the Analysis of Oligonucleotide Therapeutics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10033. [PMID: 40181565 PMCID: PMC11969060 DOI: 10.1002/rcm.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
RATIONALE Oligonucleotides have emerged as an important new class of therapeutic. Due to their structural complexity, this presents significant challenges for the development of analytical methods to characterise and determine their impurity profile. In this study, we introduce a sensitive ion-pair reverse phase method interfaced with mass spectrometry for analysis of antisense oligonucleotides and small interfering RNAs. METHODS Liquid chromatography-mass spectrometry analysis of antisense oligonucleotides and small interfering RNAs was performed using hexylamine: hexafluoro-2-propanol mobiles phases. LC-MS analysis was performed in both negative and positive ion mode. Electrospray ionisation source conditions including collision energy and temperature were optimised to minimise in-source generated impurities and alkylamine adducts in the analysis of oligonucleotide therapeutics. RESULTS The results show that under low or no in-source collision energy the presence of hexylamine adducts are observed and are predominantly on the lowest charge states present. As the in-source collision energy is increased, a reduction of hexylamine adducts is observed in conjunction with an increase in nucleobase loss in the gas phase, therefore generating in-source impurities. In comparison to tributylammonium acetate, increased MS sensitivity, higher charge states and effective removal of hexylamine adducts using mild source conditions was achieved. CONCLUSIONS Optimisation of the mild source conditions in conjunction with high pH mobile phases was combined with high-resolution accurate mass spectrometry analysis and automated deconvolution workflows to develop a simplified and streamlined approach for characterising oligonucleotide therapeutics and their related impurities.
Collapse
Affiliation(s)
- Mollie A. Glenister
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| | | | - Ken Cook
- ThermoFisher ScientificHemel HempsteadUK
| | | | - Mark J. Dickman
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
Miller SA, Jeanne Dit Fouque K, Mebel AM, Chandler KB, Fernandez-Lima F. Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences. J Phys Chem B 2024; 128:8869-8877. [PMID: 39226480 PMCID: PMC11421426 DOI: 10.1021/acs.jpcb.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fucosylated carbohydrate antigens play critical roles in physiology and pathology with function linked to their structural details. However, the separation and structural characterization of isomeric fucosylated epitopes remain challenging analytically. Here, we report for the first time the influence of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) and halogen anions (Cl-, Br-, and I-) on the gas-phase conformational landscapes of common fucosylated trisaccharides (Lewis A, X, and H types 1 and 2) and tetrasaccharides (Lewis B and Y) using trapped ion mobility spectrometry coupled to mass spectrometry and theoretical calculations. Inspection of the mobility profiles of individual standards showed a dependence on the number of mobility bands with the oligosaccharide and the alkali metal and halogen; collision cross sections are reported for all of the observed species. Results showed that trisaccharides (Lewis A, X, and H types 1 and 2) can be best mobility resolved in the positive mode using the [M + Li]+ molecular ion form (baseline resolution r ≈ 2.88 between Lewis X and A); tetrasaccharides can be best mobility resolved in the negative mode using the [M + I]- molecular ion form (baseline separation r ≈ 1.35 between Lewis B and Y). The correlation between the number of oligosaccharide conformers as a function of the molecular ion adduct was studied using density functional theory. Theoretical calculations revealed that smaller cations can form more stable structures based on the number of coordinations, while larger cations induced greater oligosaccharide reorganizations; candidate structures are proposed to better understand the gas-phase oligosaccharide rearrangement trends. Inspection of the candidate structures suggests that the interplay between ion size/charge density and molecular structure dictated the conformational preferences and, consequently, the number of mobility bands and the mobility separation across isomers. This work provides a fundamental understanding of the gas-phase structural dynamics of fucosylated oligosaccharides and their interaction with alkali metals and halogens.
Collapse
Affiliation(s)
- Samuel A Miller
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin Brown Chandler
- Translational Glycobiology Institute, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Bui QD, Deschrijver T, Noten B, Verluyten W, Vervoort N, Eeltink S. Optimization of elution conditions and comparison of emerging biocompatible columns on the resolving power and detection sensitivity of oligonucleotides by ion-pairing reversed-phase liquid chromatography mass spectrometry. J Chromatogr A 2024; 1720:464793. [PMID: 38484639 DOI: 10.1016/j.chroma.2024.464793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
A generic performance comparison strategy has been developed to evaluate the impact of mobile-phase additives (ion-pairing agent / counter ion systems), distinct stationary phases on resulting resolving power, and MS detectability of oligonucleotides and their critical impurities in gradient IP-RPLC. Stationary-phase considerations included particle type (core-shell vs. fully porous particles), particle diameter, and pore size. Separations were carried out at 60°C to optimize mass transfer (C-term). The incorporation of an active column preheater mitigated thermal mismatches, leading to narrower peaks and overcoming peak splitting. Acetonitrile as organic modifier outweighed methanol in terms of peak-capacity generation and yielded a 30% lower back pressure. Performance screening experiments were conducted varying ion-pairing agents and counter ions, while adjusting gradient span achieved an equivalent effective retention window. Hexafluoromethylisopropanol yielded superior chromatographic resolution, whereas hexafluoroisopropanol yielded significantly higher MS detection sensitivity. The 1.7 µm core-shell particle columns with 100 Å pores provided maximum resolving power for small (15-35 mers) oligonucleotides. Sub-min analysis for 15-35 polyT ladders was achieved operating a 50 mm long column at the kinetic performance limits. High-resolution separations between a 21-mer modified RNA sequence oligonucleotides and its related (shortmer and phosphodiester) impurities and complementary strand were obtained using a coupled column set-up with a total length of 450 mm.
Collapse
Affiliation(s)
- Quang-Dong Bui
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium
| | - Tiny Deschrijver
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Bart Noten
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Willy Verluyten
- Janssen Pharmaceutica, Analytical Development, Beerse, Belgium
| | - Nico Vervoort
- Janssen Pharmaceutica, Process Analytical Research - Chemical Process Research and Development, Beerse, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Brussels, Belgium.
| |
Collapse
|
4
|
Yuen BPN, Wong KS, So YM, Kwok WH, Cheung HW, Wan TSM, Ho ENM, Wong WT. Gene Doping Control Analysis of Human Erythropoietin Transgene in Equine Plasma by PCR-Liquid Chromatography High-Resolution Tandem Mass Spectrometry. Anal Chem 2024; 96:5307-5314. [PMID: 38504497 DOI: 10.1021/acs.analchem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Gene doping involves the misuse of genetic materials to alter an athlete's performance, which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. To further advance gene doping control, we have developed for the first time a sensitive and definitive PCR-liquid chromatography high-resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection with an estimated limit of detection of below 100 copies/mL for the human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP) followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analyzed by LC-HRMS/MS. The applicability of this method has been demonstrated by the successful detection of hEPO transgene in a blood sample collected from a gelding (castrated male horse) that had been administered the transgene. This novel approach not only serves as a complementary method for transgene detection but also paves the way for developing a generic PCR-LC-HRMS/MS method for the detection of multiple transgenes.
Collapse
Affiliation(s)
- Bruce Pui-Nam Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Terence See Ming Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Emmie Ngai-Man Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin N.T., Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Guimaraes GJ, Saad JG, Annavarapu V, Bartlett MG. Mobile Phase Aging and Its Impact on Electrospray Ionization of Oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2691-2699. [PMID: 37978939 DOI: 10.1021/jasms.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The implementation of fluoroalcohol/alkylamine mobile phase systems in oligonucleotide LC-MS provides a good balance between chromatographic separations and MS sensitivity. Since its introduction, several parameters including mobile phase composition, additive concentration, alkylamine hydrophobicity, and different fluoroalcohols have been carefully evaluated and optimized. While our understanding of this mobile phase system has increased over the years, there are challenges that continue to hinder method performance and remain poorly understood. One of these challenges is the constant loss of MS sensitivity over time, commonly termed mobile phase aging. This study investigates two aging mechanisms associated with loss of MS sensitivity: alkylamine oxidation and aggregate formation. The relationship between pH, organic solvent, oxygen, and mobile phase aging is characterized, and mitigation strategies to extend mobile phase lifetime are discussed.
Collapse
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia 30602, United States
| | - Jack G Saad
- Micromeritics Instrument Company, 4356 Communications Drive, Norcross, Georgia 30093, United States
| | - Vidya Annavarapu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia 30602, United States
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Lippens JL, Timmons HC, Welch C, Kulkarni A, Flick TG. Rapid Intact Mass Analysis and Evaluation of the Separation Potential of Microfluidic Capillary Electrophoresis Mass Spectrometry for Oligonucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2491-2497. [PMID: 37823612 DOI: 10.1021/jasms.3c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Oligonucleotide characterization is a rapidly advancing field in the biopharmaceutical industry. Understanding critical quality attributes, such as intact mass and impurities, requires a toolbox of analytical techniques, which commonly includes liquid chromatography-mass spectrometry (LC-MS). Oligonucleotide LC-MS analysis frequently requires sample run times upward of 15 min to achieve separation of multiple oligonucleotide species. Additionally, LC methods frequently employ mobile phase additives such as triethylamine and 1,1,1,3,3,3-hexafluoro-2-propanol that are not always desired for use in MS instrumentation. Here, microfluidic capillary electrophoresis mass spectrometry (CE-MS) via ZipChip technology was employed to enable rapid intact mass analysis of oligonucleotide single strands. Baseline separation of equal length oligonucleotides was achieved in less than 4 min. Additionally, the potential of the ZipChip platform for separation of oligonucleotide full-length products (FLPs) and their impurities was evaluated.
Collapse
Affiliation(s)
- Jennifer L Lippens
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| | - Heath C Timmons
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| | - Crystal Welch
- 908 Devices, Boston, Massachusetts 94720-1460, United States
| | - Aditya Kulkarni
- 908 Devices, Boston, Massachusetts 94720-1460, United States
| | - Tawnya G Flick
- Pivotal Attribute Sciences, Amgen, Thousand Oaks, California 91320, United States
| |
Collapse
|
7
|
Kuo YA, Jung C, Chen YA, Kuo HC, Zhao OS, Nguyen TD, Rybarski JR, Hong S, Chen YI, Wylie DC, Hawkins JA, Walker JN, Shields SWJ, Brodbelt JS, Petty JT, Finkelstein IJ, Yeh HC. Massively Parallel Selection of NanoCluster Beacons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204957. [PMID: 35945159 PMCID: PMC9588665 DOI: 10.1002/adma.202204957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.
Collapse
Affiliation(s)
- Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Oliver S Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Trung D Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Computational Biology and Bioinformatics, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, 78712, USA
| | - John A Hawkins
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29617, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Omuro S, Yamaguchi T, Kawase T, Terasaki M, Hirose K, Obika S. Physicochemical property evaluation of modified oligonucleotides by traveling-wave ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9279. [PMID: 35203101 DOI: 10.1002/rcm.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Therapeutic oligonucleotides have molecular weights of more than 6000 Da. They typically contain chemically modified structures such as phosphorothioate (PS) and a locked nucleic acid (LNA). To determine the effect of the length and chemical modification on the physicochemical properties, various nucleic acids with different lengths and modified structures were analyzed using traveling-wave ion mobility mass spectrometry (TWIMS). METHODS The physicochemical characteristics of the modified oligonucleotides were determined using IM-MS. Each oligonucleotide was evaluated by confirming the multivalent charge state drift times, collision cross-section (CCS) values, and CCS widths. RESULTS By plotting the m/z for oligonucleotides of different lengths and the CCS values at each charge state, a bottoming-out shape plot at one charge per 4.0-3.5 bases was confirmed. Moreover, significant differences were observed in the CCS values between the PS-modified and unmodified oligonucleotides. The PS-modified oligonucleotide showed a wider CCS range that was proportional to the PS modification ratio of the oligonucleotide sequence. CONCLUSIONS The TWIMS results showed a correlation between the length and modification of oligonucleotides and the CCS values. In addition, it suggested that each charge state of the oligonucleotide ion has different physicochemical properties.
Collapse
Affiliation(s)
- Shogo Omuro
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Advancements in the characterisation of oligonucleotides by high performance liquid chromatography-mass spectrometry in 2021: A short review. ANALYTICAL SCIENCE ADVANCES 2022; 3:90-102. [PMID: 38715636 PMCID: PMC10989539 DOI: 10.1002/ansa.202100066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
The first oligonucleotide therapeutic was approved by the Food and Drug Administration in 1998, and since then, 12 nucleic acids have been commercialised as medicines. To be approved, the oligonucleotides need to be identified and characterised as well as its related impurities. Different methods exist, but the most commonly used is ion-pairing reversed-phase liquid chromatography with tandem mass spectrometry. The separation obtained depends on the mobile phase and column used. Other methods have been developed, notably by using hydrophilic interaction chromatography and two-dimensional high performance liquid chromatography. Furthermore, ion-pairing reversed-phase high performance liquid chromatography ultra-violet spectroscopy detection and mass spectrometry has been optimised for the analysis of methylated nucleobases due to the utilisation of this modification in the drugs. This review covers the recent advancements in the analysis and characterisation of oligonucleotides in 2021 by high performance liquid chromatography mass spectrometry, notably by hydrophilic interaction chromatography and two-dimensional liquid chromatography but also the different parameters that influence the analysis by ion-pairing reversed-phase high performance liquid chromatography, the characterisation of methylated nucleobases, and the recent software developed for oligonucleotides.
Collapse
Affiliation(s)
- Fabien Hannauer
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Rachelle Black
- New Modalities Product DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| | - Andrew D. Ray
- New Modalities Product DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| | - Eugen Stulz
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - G. John Langley
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Stephen W. Holman
- Chemical DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| |
Collapse
|
10
|
Guimaraes GJ, Bartlett MG. The critical role of mobile phase pH in the performance of oligonucleotide ion-pair liquid chromatography-mass spectrometry methods. Future Sci OA 2021; 7:FSO753. [PMID: 34840810 PMCID: PMC8610006 DOI: 10.2144/fsoa-2021-0084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Guilherme J Guimaraes
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Michael G Bartlett
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr A 2021; 1651:462283. [PMID: 34107400 DOI: 10.1016/j.chroma.2021.462283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
The number of RNA-based therapeutics has significantly grown in number on the market over the last 20 years. This number is expected to further increase in the coming years as many RNA therapeutics are being tested in late clinical trials stages. The first part of this paper considers the mechanism of action, the synthesis and the potential impurities resulting from synthesis as well as the strategies used to increase RNA-based therapeutics efficacy. In the second part of this review, the tests that are usually performed in the pharmaceutical industry for the quality testing of antisense oligonucleotides (ASOs), small-interfering RNAs (siRNAs) and messenger RNAs (mRNAs) will be described. In the last part, the remaining challenges and the ongoing developments to meet them are discussed.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium.
| |
Collapse
|