1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Leontyev D, Olivos H, Shrestha B, Datta Roy PM, LaPlaca MC, Fernández FM. Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging for Traumatic Brain Injury Spatial Metabolomics. Anal Chem 2024; 96:13598-13606. [PMID: 39106040 PMCID: PMC11339727 DOI: 10.1021/acs.analchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Lipidomics focuses on investigating alterations in a wide variety of lipids that harness important information on metabolic processes and disease pathology. However, the vast structural diversity of lipids and the presence of isobaric and isomeric species creates serious challenges in feature identification, particularly in mass spectrometry imaging experiments that lack front-end separations. Ion mobility has emerged as a potential solution to address some of these challenges and is increasingly being utilized as part of mass spectrometry imaging platforms. Here, we present the results of a pilot mass spectrometry imaging study on rat brains subjected to traumatic brain injury (TBI) to evaluate the depth and quality of the information yielded by desorption electrospray ionization cyclic ion mobility mass spectrometry (DESI cIM MSI). Imaging data were collected with one and six passes through the cIM cell. Increasing the number of passes increased the ion mobility resolving power and the resolution of isobaric lipids, enabling the creation of more specific maps. Interestingly, drift time data enabled the recognition of multiply charged phosphoinositide species in the complex data set generated. These species have not been previously reported in TBI MSI studies and were found to decrease in the hippocampus region following injury. These changes were attributed to increased enzymatic activity after TBI, releasing arachidonic acid that is converted to eicosanoids to control inflammation. A substantial reduction in NAD and alterations in other adenine metabolites were also observed, supporting the hypothesis that energy metabolism in the brain is severely disrupted in TBI.
Collapse
Affiliation(s)
- Dmitry Leontyev
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
| | - Hernando Olivos
- Waters
Corporation, Milford, Massachusetts 01757, United State
| | | | - Pooja M. Datta Roy
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United State
- Parker
H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia 30332, United
States
| |
Collapse
|
3
|
Ivanova B. Special Issue with Research Topics on "Recent Analysis and Applications of Mass Spectra on Biochemistry". Int J Mol Sci 2024; 25:1995. [PMID: 38396673 PMCID: PMC10888122 DOI: 10.3390/ijms25041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Analytical mass spectrometry applies irreplaceable mass spectrometric (MS) methods to analytical chemistry and chemical analysis, among other areas of analytical science [...].
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
5
|
Guo RR, Lageveen-Kammeijer GSM, Wang W, Dalebout H, Zhang W, Wuhrer M, Liu L, Heijs B, Voglmeir J. Analysis of Immunogenic Galactose-α-1,3-galactose-Containing N-Glycans in Beef, Mutton, and Pork Tenderloin by Combining Matrix-Assisted Laser Desorption/Ionization-Mass Spectroscopy and Capillary Electrophoresis Hyphenated with Mass Spectrometry via Electrospray Ionization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4184-4192. [PMID: 36809004 DOI: 10.1021/acs.jafc.2c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Severe allergic reactions to certain types of meat following tick bites have been reported in geographic regions which are endemic with ticks. This immune response is directed to a carbohydrate antigen (galactose-α-1,3-galactose or α-Gal), which is present in glycoproteins of mammalian meats. At the moment, asparagine-linked complex carbohydrates (N-glycans) with α-Gal motifs in meat glycoproteins and in which cell types or tissue morphologies these α-Gal moieties are present in mammalian meats are still unclear. In this study, we analyzed α-Gal-containing N-glycans in beef, mutton, and pork tenderloin and provided for the first time the spatial distribution of these types of N-glycans in various meat samples. Terminal α-Gal-modified N-glycans were found to be highly abundant in all analyzed samples (55, 45, and 36% of N-glycome in beef, mutton, and pork, respectively). Visualizations of the N-glycans with α-Gal modification revealed that this motif was mainly present in the fibroconnective tissue. To conclude, this study contributes to a better understanding of the glycosylation biology of meat samples and provides guidance for processed meat products, in which only meat fibers are required as an ingredient (i.e., sausages or canned meat).
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hans Dalebout
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Wangang Zhang
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
7
|
Steven RT, Niehaus M, Taylor AJ, Nasif A, Elia E, Goodwin RJA, Takats Z, Bunch J. Atmospheric-Pressure Infrared Laser-Ablation Plasma-Postionization Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh-Frozen Tissue Sections with No Sample Preparation. Anal Chem 2022; 94:9970-9974. [PMID: 35798333 PMCID: PMC9310026 DOI: 10.1021/acs.analchem.2c00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Mass spectrometry
imaging (MSI) encompasses a powerful suit of
techniques which provide spatially resolved atomic and molecular information
from almost any sample type. MSI is now widely used in preclinical
research to provide insight into metabolic phenotypes of disease.
Typically, fresh-frozen tissue preparations are considered optimal
for biological MSI and other traditional preservation methods such
as formalin fixation, alone or with paraffin embedding (FFPE), are
considered less optimal or even incompatible. Due to the prevalence
of FFPE tissue storage, particularly for rare and therefore high-value
tissue samples, there is substantial motivation for optimizing MSI
methods for analysis of FFPE tissue. Here, we present a novel modality,
atmospheric-pressure infrared laser-ablation plasma postionization
(AP-IR-LA-PPI), with the first proof-of-concept examples of MSI for
FFPE and fresh-frozen tissues, with no post-sectioning sample preparation.
We present ion images from FFPE and fresh tissues in positive and
negative ion modes. Molecular annotations (via the Metaspace annotation
engine) and on-tissue MS/MS provide additional confidence that the
detected ions arise from a broad range of metabolite and lipid classes
from both FFPE and fresh-frozen tissues.
Collapse
Affiliation(s)
- Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom
| | - Marcel Niehaus
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom
| | - Adam J Taylor
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom
| | - Ammar Nasif
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom
| | - Efstathios Elia
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0WG, United Kingdom.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Biological Mass Spectrometry, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, United Kingdom
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW12 0WL, United Kingdom.,Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Biological Mass Spectrometry, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, United Kingdom
| |
Collapse
|