1
|
Matney R, Blake G, Gadkari VV. Surface-Induced Unfolding Reveals Unique Structural Features and Enhances Machine Learning Classification Models. Anal Chem 2025; 97:6295-6302. [PMID: 40085815 DOI: 10.1021/acs.analchem.5c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Native ion mobility-mass spectrometry combined with collision-induced unfolding (CIU) is a powerful analytical method for protein characterization, offering insights into structural stability and enabling the differentiation of analytes with similar mass and mobility. A surface-induced dissociation (SID) device was recently commercialized, enabling broader adoption of SID measurements and surface-induced unfolding (SIU). This study evaluates SIU, benchmarking its reproducibility and performance against CIU on a Waters CyclicIMS ion mobility-mass spectrometer. Reproducibility studies were conducted on model proteins, including β-lactoglobulin (β-lac), bovine serum albumin (BSA), and immunoglobulin G1 kappa (IgG1κ). SIU and CIU exhibited comparable reproducibility, with root-mean-square deviation (RMSD) values averaging less than 4% across multiple charge states. Notably, SIU achieved unfolding transitions at lower lab-frame energies, enhancing sensitivity to subtle structural differences and providing additional analytical information, such as unique high arrival time unfolding features and additional unfolding transitions. Furthermore, the differentiation of closely related protein subclasses, such as IgG1κ and IgG4κ, was improved with SIU, as evidenced by the enhancement of supervised machine learning models for IgG subclass classifications. SIU-trained models outperformed or matched CIU-trained models, achieving high cross-validation accuracies (>90%) and robust classifications of biotherapeutics Adalimumab and Nivolumab. This work establishes SIU as a complementary and efficient alternative to CIU, offering improved sensitivity and analytical depth without loss in reproducibility. This work highlights the benefits of including SIU in protein characterization workflows, particularly in high-throughput and machine learning-guided applications.
Collapse
Affiliation(s)
- Rowan Matney
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gabrielle Blake
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Varun V Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Lin YF, Jones BJ, Ridgeway ME, Panczyk EM, Somogyi A, Kaplan DA, Marathe I, Yun S, Kirby KA, Sarafianos SG, Laganowsky AD, Park MA, Wysocki VH. Adapting a Trapped Ion Mobility Spectrometry-Q-TOF for High m/ z Native Mass Spectrometry and Surface-Induced Dissociation. Anal Chem 2025; 97:3827-3835. [PMID: 39957060 DOI: 10.1021/acs.analchem.4c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Native mass spectrometry (nMS) is an increasingly popular technique for studying intact protein quaternary structure. When coupled with ion mobility, which separates ions based on their size, charge, and shape, it provides additional structural information on the protein complex of interest. We present here data from a novel prototype TIMS (trapped ion mobility spectrometry)-quadrupole-SID (surface-induced dissociation)-time of flight, TIMS-Q-SID-TOF, instrument for nMS. The modifications include changing the TIMS cartridge from concave to convex electrode geometry with a dual TIMS tunnel design and operating TIMS at 425 kHz radio frequency (RF) to improve the trapping efficiency for high mass-to-charge (m/z) ion mobility analysis, such as 3 and 4 MDa hepatitis B virus capsids. The quadrupole RF driver was lowered to 385 kHz, which extends the isolation range from 3,000 to 17,000 m/z and allows isolation of a single charge state of GroEL at 16,200 m/z with an isolation window of 25 m/z. Finally, a 6 mm thick, 2-lens SID device replaced the collision cell entrance lens. SID dissociated 801 kDa GroEL into all combinations of subcomplexes, and the peaks were well-resolved, allowing for confident assignment of product ions. This is the first time a novel prototype timsTOF Pro for nMS has been introduced with high resolving power ion mobility separation coupled to high m/z quadrupole selection and SID for protein complex fragmentation with product ion collection and detection across a broad m/z range of 1,500 to 40,000.
Collapse
Affiliation(s)
- Yu-Fu Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin J Jones
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Erin M Panczyk
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Arpad Somogyi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Ila Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sangho Yun
- Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30307 United States
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30307 United States
| | - Arthur D Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Osho KE, Kunwor K, Borotto NB. Ion Mobility-Assisted Free Radical-Initiated Peptide Sequencing. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2025; 508:117396. [PMID: 39830974 PMCID: PMC11737517 DOI: 10.1016/j.ijms.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Free radical-initiated peptide sequencing (FRIPS) is a tandem mass spectrometry technique (MS/MS) that enables radical-based dissociation on instruments only capable of collisional activation. In FRIPS, peptides are chemically-derivatized with a compound that undergoes homolytic cleavage and generates radicals upon collisional activation. These radicals then propagate through the peptide backbone enabling the sequencing of peptide ions. This MS/MS technique has shown promise in sequencing post-translationally modified peptides, but it is typically performed in an MS3 workflow and single-step MS/MS approaches result in the generation of both collisional- and radical-driven dissociation products and highly complex spectra. Recently, our group developed a method to dissociate peptide ions prior to ion mobility analysis within a trapped-ion mobility spectrometry (TIMS) device. In this work, we examine if this "CIDtims" technique can initiate the homolytic cleavage of the FRIPS precursor. We then examine if the resultant ion mobility separation results in additional assignments of product ions and improved sequence coverage. We demonstrate that activation within the TIMS device does indeed promote robust radical initiation and fragmentation of peptide cations and that the generated product ions are mobility separated enabling facile assignment and increased sequence coverage.
Collapse
Affiliation(s)
- Kemi E. Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| | - Keshari Kunwor
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| | - Nicholas B. Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street,
Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Graham KA, Grisolia VJ, Borotto NB. Mobility-Assisted Pseudo-MS 3 Sequencing of Protein Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2699-2705. [PMID: 38920020 PMCID: PMC11540755 DOI: 10.1021/jasms.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The sequencing of intact proteins within a mass spectrometer has many benefits but is frequently limited by the fact that tandem mass spectrometry (MS/MS) techniques often generate poor sequence coverages when applied to protein ions. To overcome this limitation, exotic MS/MS techniques that rely on lasers and radical chemistry have been developed. These techniques generate high sequence coverages, but they require specialized instrumentation, create products through multiple dissociation mechanisms, and often require long acquisition times. Recently, we demonstrated that protein ions can be dissociated in a trapped ion mobility spectrometry (TIMS) device prior to mobility separation in a commercial timsTOF. All generated product ions were distributed throughout the mobility dimension, and this separation enabled deconvolution of complex tandem mass spectra and could enable facile pseudo-MS3 interrogation of generated product ions with the downstream quadrupole and collision cell. A second activation step improves sequence coverage because the most labile bonds have been depleted during the first dissociation and subsequent dissociation events are more evenly distributed throughout the product ion backbone. In this work, we explore the potential of this mobility-assisted pseudo-MS3 (MAP) method on a commercial timsTOF and timsTOF Pro 2. We demonstrate that while MAP only generates 92% of the sequence coverage of the most effective MS/MS technique, it accomplished this feat in 1.5 min and could be facilely integrated with liquid chromatographic separations.
Collapse
Affiliation(s)
- Katherine A. Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Vincent J. Grisolia
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Nicholas B. Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
Butalewicz JP, Escobar EE, Wootton CA, Theisen A, Park MA, Seeley EH, Brodbelt JS. Conformational Characterization of Peptides and Proteins by 193 nm Ultraviolet Photodissociation in the Collision Cell of a Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:16154-16161. [PMID: 39365147 DOI: 10.1021/acs.analchem.4c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin. The resultant data displayed differences in fragmentation that could be correlated with changes in protein conformation. Additionally, this mobility-resolved UVPD strategy was applied to collision-induced unfolded ions of ubiquitin to follow changes in fragmentation patterns relating to the extent of protein unfolding. This platform and methodology offer new opportunities for exploring how conformational variations are manifested in the fragmentation patterns of gas-phase ions.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Alina Theisen
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Erin H Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Panczyk EM, Lin YF, Harvey SR, Snyder DT, Liu FC, Ridgeway ME, Park MA, Bleiholder C, Wysocki VH. Evaluation of a Commercial TIMS-Q-TOF Platform for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1394-1402. [PMID: 38905538 PMCID: PMC11651300 DOI: 10.1021/jasms.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography. The ability to perform high-quality native mass spectrometry of protein complexes, however, remains largely uninvestigated. Here, we evaluate a commercial TIMS-Q-TOF platform for analyzing noncovalent protein complexes by utilizing the instrument's full range of ion mobility, MS, and MS/MS (both in-source activation and collision cell CID) capabilities. The TIMS analyzer is able to be tuned gently to yield collision cross sections of native-like complexes comparable to those previously reported on various instrument platforms. In-source activation and collision cell CID were robust for both small and large complexes. TIMS-CID was performed on protein complexes streptavidin (53 kDa), avidin (68 kDa), and cholera toxin B (CTB, 58 kDa). Complexes pyruvate kinase (237 kDa) and GroEL (801 kDa) were beyond the trapping capabilities of the commercial TIMS analyzer, but TOF mass spectra could be acquired. The presented results indicate that the commercial TIMS-Q-TOF platform can be used for both omics and native mass spectrometry applications; however, modifications to the commercial RF drivers for both the TIMS analyzer and quadrupole (currently limited to m/z 3000) are necessary to mobility analyze protein complexes greater than about 60 kDa.
Collapse
Affiliation(s)
- Erin M. Panczyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
- Bruker Daltonics Inc., Billerica, MA 01821, USA
| | - Yu-Fu Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton T. Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Matney R, Gadkari VV. Recent advances in gas phase unfolding: Instrumentation and applications. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5059. [PMID: 38894609 DOI: 10.1002/jms.5059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Broader adoption of native mass spectrometry (MS) and ion mobility-mass spectrometry (IM-MS) has propelled the development of several techniques which take advantage of the selectivity, sensitivity, and speed of MS to make measurements of complex biological molecules in the gas phase. One such method, collision induced unfolding (CIU), has risen to prominence in recent years, due to its well documented capability to detect shifts in structural stability of biological molecules in response to external stimuli (e.g., mutations, stress, non-covalent interactions, sample conditions etc.). This increase in reported CIU measurements is enabled partly due to advances in IM-MS instrumentation by vendors, and also innovative method development by researchers. This perspective highlights a few of these advances and concludes with a look forward toward the future of the gas phase unfolding field.
Collapse
Affiliation(s)
- Rowan Matney
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Varun V Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
10
|
Voeten RLC, Majeed HA, Bos TS, Somsen GW, Haselberg R. Investigating direct current potentials that affect native protein conformation during trapped ion mobility spectrometry-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5021. [PMID: 38605451 DOI: 10.1002/jms.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.
Collapse
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
- TI-COAST, Amsterdam, The Netherlands
| | - Hany A Majeed
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Tijmen S Bos
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| |
Collapse
|
11
|
Stroganova I, Willenberg H, Tente T, Depraz Depland A, Bakels S, Rijs AM. Exploring the Aggregation Propensity of PHF6 Peptide Segments of the Tau Protein Using Ion Mobility Mass Spectrometry Techniques. Anal Chem 2024; 96:5115-5124. [PMID: 38517679 PMCID: PMC10993201 DOI: 10.1021/acs.analchem.3c04974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Peptide and protein aggregation involves the formation of oligomeric species, but the complex interplay between oligomers of different conformations and sizes complicates their structural elucidation. Using ion mobility mass spectrometry (IM-MS), we aim to reveal these early steps of aggregation for the Ac-PHF6-NH2 peptide segment from tau protein, thereby distinguishing between different oligomeric species and gaining an understanding of the aggregation pathway. An important factor that is often neglected, but which can alter the aggregation propensity of peptides, is the terminal capping groups. Here, we demonstrate the use of IM-MS to probe the early stages of aggregate formation of Ac-PHF6-NH2, Ac-PHF6, PHF6-NH2, and uncapped PHF6 peptide segments. The aggregation propensity of the four PHF6 segments is confirmed using thioflavin T fluorescence assays and transmission electron microscopy. A novel approach based on post-IM fragmentation and quadrupole selection on the TIMS-Qq-ToF (trapped ion mobility) spectrometer was developed to enhance oligomer assignment, especially for the higher-order aggregates. This approach pushes the limits of IM identification of isobaric species, whose signatures appear closer to each other with increasing oligomer size, and provides new insights into the interpretation of IM-MS data. In addition, TIMS collision cross section values are compared with traveling wave ion mobility (TWIMS) data to evaluate potential instrumental bias in the trapped ion mobility results. The two IM-MS instrumental platforms are based on different ion mobility principles and have different configurations, thereby providing us with valuable insight into the preservation of weakly bound biomolecular complexes such as peptide aggregates.
Collapse
Affiliation(s)
- Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Hannah Willenberg
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Thaleia Tente
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| | - Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sjors Bakels
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical
Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
12
|
Juliano BR, Keating JW, Li HW, Anders AG, Xie Z, Ruotolo BT. Development of an Automated, High-Throughput Methodology for Native Mass Spectrometry and Collision-Induced Unfolding. Anal Chem 2023; 95:16717-16724. [PMID: 37924308 PMCID: PMC11081713 DOI: 10.1021/acs.analchem.3c03788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Native ion mobility mass spectrometry (nIM-MS) has emerged as a useful technology for the rapid evaluation of biomolecular structures. When combined with collisional activation in a collision-induced unfolding (CIU) experiment, nIM-MS experimentation can be leveraged to gain greater insight into biomolecular conformation and stability. However, nIM-MS and CIU remain throughput limited due to nonautomated sample preparation and introduction. Here, we explore the use of a RapidFire robotic sample handling system to develop an automated, high-throughput methodology for nMS and CIU. We describe native RapidFire-MS (nRapidFire-MS) capable of performing online desalting and sample introduction in as little as 10 s per sample. When combined with CIU, our nRapidFire-MS approach can be used to collect CIU fingerprints in 30 s following desalting by using size exclusion chromatography cartridges. When compared to nMS and CIU data collected using standard approaches, ion signals recorded by nRapidFire-MS exhibit identical ion collision cross sections, indicating that the same conformational populations are tracked by the two approaches. Our data further suggest that nRapidFire-MS can be extended to study a variety of biomolecular classes, including proteins and protein complexes ranging from 5 to 300 kDa and oligonucleotides. Furthermore, nRapidFire-MS data acquired for biotherapeutics suggest that nRapidFire-MS has the potential to enable high-throughput nMS analyses of biopharmaceutical samples. We conclude by discussing the potential of nRapidFire-MS for enabling the development of future CIU assays capable of catalyzing breakthroughs in protein engineering, inhibitor discovery, and formulation development for biotherapeutics.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna G Anders
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhuoer Xie
- Attribute Sciences, Process Development, Amgen, Thousand Oaks, California 91320, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Nagy K, Gellén G, Papp D, Schlosser G, Révész Á. Optimum collision energies for proteomics: The impact of ion mobility separation. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4957. [PMID: 37415399 DOI: 10.1002/jms.4957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ion mobility spectrometry (IMS) is a widespread separation technique used in various research fields. It can be coupled to liquid chromatography-mass spectrometry (LC-MS/MS) methods providing an additional separation dimension. During IMS, ions are subjected to multiple collisions with buffer gas, which may cause significant ion heating. The present project addresses this phenomenon from the bottom-up proteomics point of view. We performed LC-MS/MS measurements on a cyclic ion mobility mass spectrometer with varied collision energy (CE) settings both with and without IMS. We investigated the CE dependence of identification score, using Byonic search engine, for more than 1000 tryptic peptides from HeLa digest standard. We determined the optimal CE values-giving the highest identification score-for both setups (i.e., with and without IMS). Results show that lower CE is advantageous when IMS separation is applied, by 6.3 V on average. This value belongs to the one-cycle separation configuration, and multiple cycles may supposedly have even larger impact. The effect of IMS is also reflected in the trends of optimal CE values versus m/z functions. The parameters suggested by the manufacturer were found to be almost optimal for the setup without IMS; on the other hand, they are obviously too high with IMS. Practical consideration on setting up a mass spectrometric platform hyphenated to IMS is also presented. Furthermore, the two CID (collision induced dissociation) fragmentation cells of the instrument-located before and after the IMS cell-were also compared, and we found that CE adjustment is needed when the trap cell is used for activation instead of the transfer cell. Data have been deposited in the MassIVE repository (MSV000090944).
Collapse
Affiliation(s)
- Kinga Nagy
- MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
14
|
Perchepied S, Zhou Z, Mitulović G, Eeltink S. Exploiting ion-mobility mass spectrometry for unraveling proteome complexity. J Sep Sci 2023; 46:e2300512. [PMID: 37746674 DOI: 10.1002/jssc.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
Collapse
Affiliation(s)
- Stan Perchepied
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Zhuoheng Zhou
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
15
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Expanding Orbitrap Collision Cross-Section Measurements to Native Protein Applications Through Kinetic Energy and Signal Decay Analysis. Anal Chem 2023; 95:7656-7664. [PMID: 37133913 DOI: 10.1021/acs.analchem.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The measurement of collision cross sections (CCS, σ) offers supplemental information about sizes and conformations of ions beyond mass analysis alone. We have previously shown that CCSs can be determined directly from the time-domain transient decay of ions in an Orbitrap mass analyzer as ions oscillate around the central electrode and collide with neutral gas, thus removing them from the ion packet. Herein, we develop the modified hard collision model, thus deviating from the prior FT-MS hard sphere model, to determine CCSs as a function of center-of-mass collision energy in the Orbitrap analyzer. With this model, we aim to increase the upper mass limit of CCS measurement for native-like proteins, characterized by low charge states and presumed to be in more compact conformations. We also combine CCS measurements with collision induced unfolding and tandem mass spectrometry experiments to monitor protein unfolding and disassembly of protein complexes and measure CCSs of ejected monomers from protein complexes.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Kyle L Fort
- Thermo Fisher Scientific, Bremen 28199, Germany
| | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Chakraborty P, Neumaier M, Weis P, Kappes MM. Exploring Isomerism in Isolated Cyclodextrin Oligomers through Trapped Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:676-684. [PMID: 36952473 DOI: 10.1021/jasms.2c00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cyclodextrin (CD) macrocycles are used to create a wide range of supramolecular architectures which are also of interest in applications such as selective gas adsorption, drug delivery, and catalysis. However, predicting their assemblies and identifying the possible isomers in CD oligomers have always remained challenging due to their dynamic nature. Herein, we interacted CDs (α, β, and γ) with a divalent metal ion, Cu2+, to create a series of Cu2+-linked CD oligomers, from dimers to pentamers. We characterized these oligomers using electrospray ionization mass spectrometry and probed isomerism in each of these isolated oligomers using high resolution trapped ion mobility spectrometry. Using this technique, we separated multiple isomers for each of the Cu2+-interlinked CD oligomers and estimated their relative population, which was not accessible previously using other characterization techniques. We further carried out structural analysis of the observed isomers by comparing the experimental collision cross sections (CCSs) to that of modeled structures. We infer that the isomeric heterogeneity reflects size-specific packing patterns of individual CDs (e.g., close-packed/linear). In some cases, we also reveal the existence of kinetically trapped structures in the gas phase and study their transformation to thermodynamically controlled forms by examining the influence of activation of the ions on isomer interconversion.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Graham KA, Lawlor CF, Borotto NB. Characterizing the top-down sequencing of protein ions prior to mobility separation in a timsTOF. Analyst 2023; 148:1534-1542. [PMID: 36876327 PMCID: PMC10042122 DOI: 10.1039/d2an01682f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mass spectrometry (MS)-based proteomics workflows of intact protein ions have increasingly been utilized to study biological systems. These workflows, however, frequently result in convoluted and difficult to analyze mass spectra. Ion mobility spectrometry (IMS) is a promising tool to overcome these limitations by separating ions by their mass- and size-to-charge ratios. In this work, we further characterize a newly developed method to collisionally dissociate intact protein ions in a trapped ion mobility spectrometry (TIMS) device. Dissociation occurs prior to ion mobility separation and thus, all product ions are distributed throughout the mobility dimension, enabling facile assignment of near isobaric product ions. We demonstrate that collisional activation within a TIMS device is capable of dissociating protein ions up to 66 kDa. We also demonstrate that the ion population size within the TIMS device significantly influences the efficiency of fragmentation. Lastly, we compare CIDtims to the other modes of collisional activation available on the Bruker timsTOF and demonstrate that the mobility resolution in CIDtims enables the annotation of overlapping fragment ions and improves sequence coverage.
Collapse
Affiliation(s)
- Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Charles F Lawlor
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
19
|
Depraz Depland A, Stroganova I, Wootton CA, Rijs AM. Developments in Trapped Ion Mobility Mass Spectrometry to Probe the Early Stages of Peptide Aggregation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:193-204. [PMID: 36633834 PMCID: PMC9896548 DOI: 10.1021/jasms.2c00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments. This would allow us to enhance the mobility separation and MS characterization. Trapped ion mobility spectrometry (TIMS) is an ion mobility technique known for its inherently high resolution and has successfully been applied to the analysis of protein conformations among others. To obtain conformational information on fragile peptide aggregates, the instrumental parameters of the TIMS-Quadrupole-Time-of-Flight mass spectrometer (TIMS-qToF-MS) have to be optimized to allow the study of intact aggregates and ensure their transmission toward the detector. Here, we investigate the suitability and application of TIMS to probe the aggregation process, targeting the well-characterized M307-N319 peptide segment of the TDP-43 protein, which is involved in the development of amyotrophic lateral sclerosis. By studying the influence of key parameters over the full mass spectrometer, such as source temperature, applied voltages or RFs among others, we demonstrate that by using an optimized instrumental method TIMS can be used to probe peptide aggregation.
Collapse
Affiliation(s)
- Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Cain RL, Webb IK. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions. Anal Bioanal Chem 2023; 415:749-758. [PMID: 36622393 DOI: 10.1007/s00216-022-04501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under "gentle" (i.e., low energy) ion transmission conditions with structures measured under "harsh" (i.e., higher energy) transmission. This work confirms that when using "gentle" instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, "harsh" conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.
Collapse
Affiliation(s)
- Rebecca L Cain
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Advancing Orbitrap Measurements of Collision Cross Sections to Multiple Species for Broad Applications. Anal Chem 2022; 94:15613-15620. [DOI: 10.1021/acs.analchem.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D. Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Borotto NB, Richards TK. Rapid Online Oxidation of Proteins and Peptides via Electrospray-Accelerated Ozonation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2078-2086. [PMID: 36194498 DOI: 10.1021/jasms.2c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry-based analyses of protein conformation continue to grow in utilization due their speed, low sample requirements, and applicability to most protein systems. These techniques typically rely on chemical derivatization of proteins and as with all label-based analyses must ensure the integrity of the protein conformation throughout the duration of the labeling reaction. Hydroxyl radical footprinting of proteins and the recently developed fast fluoroalkylation of proteins attempt to bypass this consideration via rapid reactions that occur on time scales faster than protein folding, but they often require microfluidic setups or electromagnetic radiation sources. In this work, we demonstrate that ozonation of proteins and peptides, which normally occurs in the second to minute time scales, can be accelerated to the submillisecond to millisecond time scale with an electrospray ionization source. This rapid ozonation results in selective labeling of tryptophan and methionine residues. When applied to cytochrome C and carbonic anhydrase, this labeling technique is sensitive to solution conditions and correlates with solution-phase analyses of conformation. While significant work is still needed to characterize this fast chemical labeling strategy, it requires no complicated sample handling, electromagnetic radiation sources, or microfluidic systems outside of the electrospray source and may represent a facile alternative to other rapid labeling technologies that are utilized today.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | |
Collapse
|
23
|
Cheung See Kit M, Webb IK. Application of Multiple Length Cross-linkers to the Characterization of Gaseous Protein Structure. Anal Chem 2022; 94:13301-13310. [PMID: 36100581 PMCID: PMC9532380 DOI: 10.1021/acs.analchem.2c03044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The speed, sensitivity, and tolerance of heterogeneity, as well as the kinetic trapping of solution-like states during electrospray, make native mass spectrometry an attractive method to study protein structure. Increases in the resolution of ion mobility measurements and in mass resolving power and range are leading to the increase of the information content of intact protein measurements and an expanded role of mass spectrometry in structural biology. Herein, a suite of different length noncovalent (sulfonate to positively charged side chain) cross-linkers was introduced via gas-phase ion/ion chemistry and used to determine distance restraints of kinetically trapped gas-phase structures of native-like cytochrome c ions. Electron capture dissociation allowed for the identification of cross-linked sites. Different length linkers resulted in distinct pairs of side chains being linked, supporting the ability of gas-phase cross-linking to be structurally specific. The gas-phase lengths of the cross-linkers were determined by conformational searches and density functional theory, allowing for the interpretation of the cross-links as distance restraints. These distance restraints were used to model gas-phase structures with molecular dynamics simulations, revealing a mixture of structures with similar overall shape/size but distinct features, thereby illustrating the kinetic trapping of multiple native-like solution structures in the gas phase.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Ian K. Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|