1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Ashbacher S, Manni J, Muddiman D. Comparison of Mid-Infrared and Ultraviolet Lasers Coupled to the MALDESI Source for the Detection of Secondary Metabolites and Structural Lipids in Arabidopsis thaliana. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5118. [PMID: 39963771 PMCID: PMC11833544 DOI: 10.1002/jms.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Matrix-assisted laser desorption electrospray ionization (MALDESI) conventionally utilizes a mid-infrared (IR) laser for the desorption of neutrals, allowing for detection of hundreds to thousands of analytes simultaneously. This platform enables mass spectrometry imaging (MSI) capabilities to not only detect specific molecules but also reveal the distribution and localization of a wide range of biomolecules across an organism. However, an IR laser comes with its disadvantages when imaging plants. At a mid-IR wavelength (2970 nm), the compartmentalized endogenous water within the leaf structure acts as an internal matrix, causing rapid heating, and, in turn, degrades the spatial resolution and signal quality. An ultraviolet (UV) laser operates at wavelengths that overlap with the absorption bands of secondary metabolites allowing them to serve as sacrificial matrix molecules. With the integration and optimization of a 355 nm UV laser into the MALDESI-MSI NextGen source for the analysis of plants, we were able to detect diverse molecular classes including flavonoids, fatty acid derivatives, galactolipids, and glucosinolates, at higher ion abundances when compared to the mid-IR laser. These results show that re-visiting UV-MALDESI-MSI, without the need for an exogenous matrix, provides a promising approach for the detection and imaging of important analytes in plants.
Collapse
Affiliation(s)
- Sarah M. Ashbacher
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Heininen J, Movahedi P, Kotiaho T, Kostiainen R, Pahikkala T, Teppo J. Targeted and Untargeted Amine Metabolite Quantitation in Single Cells with Isobaric Multiplexing. Chemistry 2024; 30:e202403278. [PMID: 39422672 DOI: 10.1002/chem.202403278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
We developed a single cell amine analysis approach utilizing isobarically multiplexed samples of 6 individual cells along with analyte abundant carrier. This methodology was applied for absolute quantitation of amino acids and untargeted relative quantitation of amines in a total of 108 individual cells using nanoflow LC with high-resolution mass spectrometry. Together with individually determined cell sizes, this provides accessible quantification of intracellular amino acid concentrations within individual cells. The targeted method was partially validated for 10 amino acids with limits of detection in low attomoles, linear calibration range covering analyte amounts typically from 30 amol to 120 fmol, and correlation coefficients (R) above 0.99. This was applied with cell sizes recorded during dispensing to determine millimolar intracellular amino acid concentrations. The untargeted approach yielded 249 features that were detected in at least 25 % of the single cells, providing modest cell type separation on principal component analysis. Using Greedy forward selection with regularized least squares, a sub-selection of 100 features explaining most of the difference was determined. These features were annotated using MS2 from analyte standards and accurate mass with library search. The approach provides accessible, sensitive, and high-throughput method with the potential to be expanded also to other forms of ultrasensitive analysis.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Parisa Movahedi
- Department of Computing, Turku University, 20014, Turku, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Tapio Pahikkala
- Department of Computing, Turku University, 20014, Turku, Finland
| | - Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
5
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Zhan X, Zang Y, Ma R, Lin W, Li XL, Pei Y, Shen C, Jiang Y. Mass Spectrometry-Imaging Analysis of Active Ingredients in the Leaves of Taxus cuspidata. ACS OMEGA 2024; 9:18634-18642. [PMID: 38680336 PMCID: PMC11044248 DOI: 10.1021/acsomega.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Taxus cuspidata is an endangered evergreen conifer mainly found in Northeast Asia. In addition to the well-known taxanes, several active ingredients were detected in the leaves of T. cuspidata. However, the precise spatial distribution of active ingredients in the leaves of T. cuspidata is largely unknown. RESULTS in the present study, timsTOF flex MALDI-2 analysis was used to uncover the accumulation pattern of active ingredients in T. cuspidata leaves. In total, 3084 ion features were obtained, of which 944 were annotated according to the mass spectrometry database. The principal component analysis separated all of the detected metabolites into four typical leaf tissues: mesophyll cells, upper epidermis, lower epidermis, and vascular bundle cells. Imaging analysis identified several leaf tissues that specifically accumulated active ingredients, providing theoretical support for studying the regulation mechanism of compound biosynthesis. Furthermore, the relative accumulation levels of each identified compound were analyzed. Two flavonoid compounds, ligustroflavone and Morin, were identified with high content through quantitative analysis of the ion intensity. CONCLUSIONS our data provides fundamental information for the protective utilization of T. cuspidata.
Collapse
Affiliation(s)
- Xiaori Zhan
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Zang
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruoyun Ma
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanting Lin
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-lin Li
- State
Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center
for Chinese Materia Medica, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Pei
- College
of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College
of Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, China
- Zhejiang
Provincial Key Laboratory for Genetic Improvement and Quality Control
of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Jiang
- College
of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Zhan X, Qiu T, Zhang H, Hou K, Liang X, Chen C, Wang Z, Wu Q, Wang X, Li XL, Wang M, Feng S, Zeng H, Yu C, Wang H, Shen C. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. PLANT COMMUNICATIONS 2023; 4:100630. [PMID: 37231648 PMCID: PMC10504593 DOI: 10.1016/j.xplc.2023.100630] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Taxus leaves provide the raw industrial materials for taxol, a natural antineoplastic drug widely used in the treatment of various cancers. However, the precise distribution, biosynthesis, and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown. Matrix-assisted laser desorption/ionization-mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei, confirming the tissue-specific accumulation of different active metabolites. Single-cell sequencing was used to produce expression profiles of 8846 cells, with a median of 2352 genes per cell. Based on a series of cluster-specific markers, cells were grouped into 15 clusters, suggesting a high degree of cell heterogeneity in T. mairei leaves. Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways. According to the cell-type annotation, most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells; phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells (including the stomatal complex and guard cells); and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells. A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified, including MYB17, WRKY12, WRKY31, ERF13, GT_2, and bHLH46. Our research establishes the transcriptional landscape of major cell types in T. mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaojia Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Lin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
9
|
Law SY, Asanuma M, Shou J, Ozeki Y, Kodama Y, Numata K. Deuterium- and Alkyne-Based Bioorthogonal Raman Probes for In Situ Quantitative Metabolic Imaging of Lipids within Plants. JACS AU 2023; 3:1604-1614. [PMID: 37388682 PMCID: PMC10302745 DOI: 10.1021/jacsau.3c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Plants can rapidly respond to different stresses by activating multiple signaling and defense pathways. The ability to directly visualize and quantify these pathways in real time using bioorthogonal probes would have practical applications, including characterizing plant responses to both abiotic and biotic stress. Fluorescence-based labels are widely used for tagging of small biomolecules but are relatively bulky and with potential effects on their endogenous localization and metabolism. This work describes the use of deuterium- and alkyne-derived fatty acid Raman probes to visualize and track the real-time response of plants to abiotic stress within the roots. Relative quantification of the respective signals could be used to track their localization and overall real-time responses in their fatty acid pools due to drought and heat stress without labor-intensive isolation procedures. Their overall usability and low toxicity suggest that Raman probes have great untapped potential in the field of plant bioengineering.
Collapse
Affiliation(s)
- Simon
Sau Yin Law
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, Wako, Saitama 351-0198, Japan
| | - Masato Asanuma
- Graduate
School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jingwen Shou
- Graduate
School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuyuki Ozeki
- Graduate
School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, Wako, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Utsunomiya, Tochigi 321-8505, Japan
| | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, Wako, Saitama 351-0198, Japan
- Department
of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Zhang T, Noll SE, Peng JT, Klair A, Tripka A, Stutzman N, Cheng C, Zare RN, Dickinson AJ. Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development. Nat Commun 2023; 14:2567. [PMID: 37142569 PMCID: PMC10160030 DOI: 10.1038/s41467-023-38150-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Pomona College, Claremont, CA, 91711, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abigail Tripka
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan Stutzman
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Casey Cheng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Recent advances and typical applications in mass spectrometry-based technologies for single-cell metabolite analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|