1
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
3
|
Zhao Q, Chen J, Wu M, Yin X, Jiang Q, Gao H, Zheng H. Microbiota from healthy mice alleviates cognitive decline via reshaping the gut-brain metabolic axis in diabetic mice. Chem Biol Interact 2023; 382:110638. [PMID: 37473910 DOI: 10.1016/j.cbi.2023.110638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Diabetic cognitive decline has been associated with the gut microbial disorders, but its potential gut-brain axis mechanisms remain unclear. Herein we transplanted the gut microbiota from healthy mice into type 1 diabetic (T1D) mice and then investigated the effect of fecal microbiota transplantation (FMT) on cognitive function and the gut-brain metabolic axis. The results demonstrate that FMT from healthy mice effectively improved the learning and memory abilities in T1D mice, and significantly reduced neuroinflammation and neuron injury in the cortex and hippocampus. Moreover, FMT partly reversed the gut microbiota and gut-brain metabolic disorders, particularly glutamate metabolism. In vitro study, we found that glutamate notably decreased microglia activation and the expression levels of proinflammatory factor. Hence, our study suggests that glutamate serves as a key signal metabolite connecting the gut to brain and affects cognitive functions.
Collapse
Affiliation(s)
- Qihui Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiaoying Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
5
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
6
|
Haikonen R, Kärkkäinen O, Koistinen V, Hanhineva K. Diet- and microbiota-related metabolite, 5-aminovaleric acid betaine (5-AVAB), in health and disease. Trends Endocrinol Metab 2022; 33:463-480. [PMID: 35508517 DOI: 10.1016/j.tem.2022.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
5-Aminovaleric acid betaine (5-AVAB) is a trimethylated compound associated with the gut microbiota, potentially produced endogenously, and related to the dietary intake of certain foods such as whole grains. 5-AVAB accumulates within the metabolically active tissues and has been typically found in higher concentrations in the heart, muscle, and brown adipose tissue. Furthermore, 5-AVAB has been associated with positive health effects such as fetal brain development, insulin secretion, and reduced cancer risk. However, it also has been linked with some negative health outcomes such as cardiovascular disease and fatty liver disease. At the cellular level, 5-AVAB can influence cellular energy metabolism by reducing β-oxidation of fatty acids. This review will focus on the metabolic role of 5-AVAB with respect to both physiology and pathology. Moreover, the analytics and origin of 5-AVAB and related compounds will be reviewed.
Collapse
Affiliation(s)
- Retu Haikonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ville Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|