1
|
Juetten KJ, Sanders JD, Marty MT, Brodbelt JS. Combining Fourier Transform Ion Mobility with Charge Detection Mass Spectrometry for the Analysis of Multimeric Protein Complexes. Anal Chem 2025; 97:140-146. [PMID: 39810343 DOI: 10.1021/acs.analchem.4c03379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (m/z) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes. Stepped frequency modulation was utilized to enable unambiguous frequency assignment during mobility sweeps and allow spectral averaging, which improves the accuracy and signal-to-noise of ion mobility spectra and CDMS measurements. Fourier transformation of the signal reveals the arrival times and collision cross sections of ions while simultaneously collecting charge information for thousands of individual ions. Combining Fourier transform multiplexing ion mobility and CDMS provides insight into each ion's size and mass while showcasing a potential solution to the duty cycle mismatch of online separation techniques in the single ion regime.
Collapse
Affiliation(s)
- Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Butalewicz JP, Sanders JD, Juetten KJ, Buzitis NW, Clowers BH, Brodbelt JS. Advancing Protein Analysis: A Low-Pressure Drift Tube Orbitrap Mass Spectrometer for Ultraviolet Photodissociation-Based Structural Characterization. Anal Chem 2024; 96:15674-15681. [PMID: 39283946 DOI: 10.1021/acs.analchem.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Owing to its ability to generate extensive fragmentation of proteins, ultraviolet photodissociation (UVPD) mass spectrometry (MS) has emerged as a versatile ion activation technique for the structural characterization of native proteins and protein complexes. Interpreting these fragmentation patterns provides insight into the secondary and tertiary structures of protein ions. However, the inherent complexity and diversity of proteins often pose challenges in resolving their numerous conformations. To address this limitation, we combined UVPD-MS with drift tube ion mobility, offering potential to acquire conformationally selective MS/MS information. A low-pressure drift tube (LPDT) Orbitrap mass spectrometer equipped with 193 nm UVPD capabilities enables the analysis of protein conformers through the analysis of arrival time distributions (ATDs) of individual fragment ions. ATDs of fragment ions are compared for different backbone cleavage sites of the protein or different precursor charge states to give information about regions of potential folding or elongation. This integrated platform offers promise for advancing our understanding of protein structures in the gas phase.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Sanders JD, Owen ON, Tran BH, Juetten KJ, Marty MT. UniChromCD for Demultiplexing Time-Resolved Charge Detection-Mass Spectrometry Data. Anal Chem 2024; 96:15014-15022. [PMID: 39225436 DOI: 10.1021/acs.analchem.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Charge detection mass spectrometry (CD-MS) enables characterization of large, heterogeneous analytes through the analysis of individual ion signals. Because hundreds to thousands of scans must be acquired to produce adequate ion statistics, CD-MS generally requires long analysis times. The slow acquisition speed of CD-MS complicates efforts to couple it with time-dispersive techniques, such as chromatography and ion mobility, because it is not always possible to acquire enough scans from a single sample injection to generate sufficient ion statistics. Multiplexing methods based on Hadamard and Fourier transforms offer an attractive solution to this problem by improving the duty cycle of the separation while preserving retention/drift time information. However, integrating multiplexing with CD-MS data processing is complex. Here, we present UniChromCD, a new module in the open-source UniDec package that incorporates CD-MS time-domain data processing with demultiplexing tools. Following a detailed description of the algorithm, we demonstrate its capabilities using two multiplexed CD-MS workflows: Hadamard-transform size-exclusion chromatography and Fourier-transform ion mobility. Overall, UniChromCD provides a user-friendly interface for analysis and visualization of time-resolved CD-MS data.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Schramm HM, Cabrera ER, Greer C, Clowers BH. A Modular Variable Temperature FT-IMS Instrument Optimized for Gas-Phase Ion Chemistry Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1883-1890. [PMID: 38994799 DOI: 10.1021/jasms.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The latest iteration of modular, open-source rolled ion mobility spectrometers was characterized and tailored for heated ion chemistry experiments. Because the nature of ion-neutral interactions is innately linked to the temperature of the drift cell, heated IMS experiments explicitly probe the fundamental characteristics of these collisions. While classic mobility experiments examine ions through inert buffer gases, doping the drift cell with reactive vapor enables desolvated chemical reactions to be studied. By using materials with minimal outgassing and ensuring the isolation of the drift tube from the surrounding ambient conditions, an open-source drift cell outfitted with heating components enables investigations of chemical reactions as a function of temperature. We show here that elevated temperatures facilitate an increase in deuterium incorporation and allow for hydrogen/deuterium exchanges otherwise unattainable under ambient conditions. While the initial fast exchanges get faster as temperature is increased, the slow rate which rises from the kinetic nonlinearity though to be attributed to ion-neutral clustering, remains constant with no change in mobility shifts. Additionally, we show the analytical merit of multiplexing mobility data by comparing the performance of traditional signal-averaging and FT-IMS modes.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Elvin R Cabrera
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Cullen Greer
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
5
|
Buzitis NW, Clowers BH. Development of a Modular, Open-Source, Reduced-Pressure, Drift Tube Ion Mobility Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:804-813. [PMID: 38512132 PMCID: PMC11753826 DOI: 10.1021/jasms.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Toward the goal of minimizing construction costs while maintaining high performance, a new, reduced-pressure, drift tube ion mobility system is coupled with an ion trap mass analyzer through a custom ion shuttle. The availability of reduced-pressure ion mobility systems remains limited due to comparatively expensive commercial options and limited shared design features in the open literature. This report details the complete design and benchmarking characteristics of a reduced-pressure ion mobility system. The system is constructed from FR4 PCB electrodes and encased in a PTFE vacuum enclosure with custom torque-tightened couplers to utilize standard KF40 bulkheads. The PTFE enclosure directly minimizes the overall system expenses, and the implementation of threaded brass inserts allows for facile attachments to the vacuum enclosure without damaging the thermoplastic housing. Front and rear ion funnels maximize ion transmission and help mitigate the effects of radial ion diffusion. A custom planar ion shuttle transports ions from the exit of the rear ion funnel into the ion optics of an ion trap mass analyzer. The planar ion shuttle can couple the IM system to any contemporary Thermo Scientific ion trap mass analyzer. Signal stability and ion intensity remain unchanging following the implementation of the planar ion shuttle when compared to the original stacked ring ion guide. The constructed IM system showed resolving powers up to 85 for various small molecules and proteins using the Fourier transform from a ∼1 m drift tube. Recorded mobilities derived from first principles agree with published literature results with an average error of 1.1% and an average error toward literature values using single field calibration of <1.3%.
Collapse
Affiliation(s)
- Nathan W. Buzitis
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Cabrera ER, Schrader RL, Walker TE, Laganowsky A, Russell DH, Clowers BH. Nonlinear Frequency Modulation for Fourier Transform Ion Mobility Mass Spectrometry Improves Experimental Efficiency. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 497:117197. [PMID: 38352886 PMCID: PMC10861183 DOI: 10.1016/j.ijms.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Through optimization of terminal frequencies and effective sampling rates, we have developed nonlinear sawtooth-shaped frequency sweeps for efficient Fourier transform ion mobility mass spectrometry (FT-IM-MS) experiments. This is in contrast to conventional FT-IM-MS experiments where ion gates are modulated according to a linear frequency sweep. Linear frequency sweeps are effective but can be hindered by the amount of useful signal obtained using a single sweep over a large frequency range imposed by ion gating inefficiencies, particularly small ion packets, and gate depletion. These negative factors are direct consequences of the inherently low gate pulse widths of high-frequency ion gating events, placing an upper bound on FT-IM-MS performance. Here, we report alternative ion modulation strategies. Sawtooth frequency sweeps may be constructed for the purpose of either extending high-SNR transients or conducting efficient signal-averaging experiments for low-SNR transients. The data obtained using this approach show high-SNR signals for a set of low-mass tetraalkylammonium salts (<1000 m/z) where resolving powers in excess of 500 are achieved. Data for low-SNR obtained for multimeric protein complexes streptavidin (53 kDa) and GroEL (800 kDa) also reveal large increases in the signal-to-noise ratio for reconstructed arrival time distributions.
Collapse
Affiliation(s)
- Elvin R. Cabrera
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Robert L. Schrader
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Thomas E. Walker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
7
|
Greer C, Clowers BH. Simultaneous Ion Swarm Profiling and Ion Mobility Measurement using Ion Cameras. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1545-1548. [PMID: 37403971 PMCID: PMC10529994 DOI: 10.1021/jasms.3c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
When operated as a standalone analytical device, traditional drift tube ion mobility spectrometry (IMS) experiments require high-speed, high-gain transimpedance amplifiers to record ion separations with sufficient resolution. Recent developments in the fabrication of charge-sensitive cameras (e.g., IonCCD) have provided key insights for ion beam profiling in mass spectrometry and even served as detectors for miniature magnetic sector instruments. Unfortunately, these platforms have comparatively slow integration times (multiple ms), which largely precludes their use for recording ion mobility spectra, where sampling rates into the 10s of kHz are generally required. As a result, experiments that simultaneously probe the longitudinal and transverse mobility of an injected species using an array detector have not been reported. To address this duty-cycle mismatch, a frequency encoding strategy is used to evaluate ion swarm characteristics, while directly capturing ion mobility information using the Fourier transform. This apparatus described allows the ion beam to be profiled over the full course of the experiment and establishes the foundation to examine axial and longitudinal drift velocities simultaneously.
Collapse
Affiliation(s)
- Cullen Greer
- Department of Chemistry, Washington State University, Pullman WA, 99163, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman WA, 99163, United States
| |
Collapse
|
8
|
Naylor CN, Clowers BH, Schlottmann F, Solle N, Zimmermann S. Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37276587 DOI: 10.1021/jasms.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With ion mobility spectrometry increasingly used in mass spectrometry to enhance separation by increasing orthogonality, low ion throughput is a challenge for the drift-tube ion mobility experiment. The High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is no exception and routinely uses duty cycles of less than 0.1%. Multiplexing techniques such as Fourier transform and Hadamard transform represent two of the most common approaches used in the literature to improve ion throughput for the IMS experiment; these techniques promise increased duty cycles of up to 50% and an increased signal-to-noise ratio (SNR). With no instrument modifications required, we present the implementation of Hadamard Transform on the HiKE-IMS using a low cost, high-speed (600 MHz), open source microcontroller, a Teensy 4.1. Compared to signal average mode, 7- to 10-bit pseudorandom binary sequences resulted in increased analyte signal by over a factor of 3. However, the maximum SNR gain of 10 did not approach the theoretical 2n-1 gain largely due to capacitive coupling of the ion gate modulation with the Faraday plate used as a detector. Even when utilizing an inverse Hadamard technique, capacitive coupling was not completely eliminated. Regardless, the benefits of multiplexing IMS coupled to mass spectrometers are well documented throughout literature, and this first effort serves as a proof of concept for multiplexing HiKE-IMS. Finally, the highly flexible Teensy used in this effort can be used to multiplex other devices or can be used for Fourier transform instead of Hadamard transform.
Collapse
Affiliation(s)
- Cameron N Naylor
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Nic Solle
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| |
Collapse
|
9
|
Butalewicz JP, Sanders JD, Clowers BH, Brodbelt JS. Improving Ion Mobility Mass Spectrometry of Proteins through Tristate Gating and Optimization of Multiplexing Parameters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:101-108. [PMID: 36469482 DOI: 10.1021/jasms.2c00274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coupling drift tube ion mobility (IM) to Fourier transform mass spectrometry (FT-MS) affords the opportunity for gas-phase separation of ions based on size and conformation with high-resolution mass analysis. However, combining IM and FT-MS is challenging because ions exit the drift tube on a much faster time scale than the rate of mass analysis. Fourier transform (FT) and Hadamard transform multiplexing methods have been implemented to overcome the duty-cycle mismatch, offering new avenues for obtaining high-resolution, high-mass-accuracy analysis of mobility-selected ions. The gating methods used to integrate the drift tube with the FT mass analyzer discriminate against the transmission of large, low-mobility ions owing to the well-known gate depletion effect. Tristate gating strategies have been shown to increase ion transmission for drift tube IM-FT-MS systems through implementation of dual ion gating, controlling the quantity and timing of ions through the drift tube to reduce losses of slow-moving ions. Here we present an optimized set of multiplexing parameters for tristate gating ion mobility of several proteins on an Orbitrap mass spectrometer and further report parameters for increased ion transmission and mobility resolution as well as decreased experimental times from 15 min down to 30 s. On average, peak intensities in the arrival time distributions (ATDs) for ubiquitin increased 2.1× on average, while those of myoglobin increased by 1.5× with a resolving power increase on average of 11%.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Cabrera ER, Clowers BH. Considerations for Generating Frequency Modulation Waveforms for Fourier Transform-Ion Mobility Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1858-1864. [PMID: 36066398 PMCID: PMC10370403 DOI: 10.1021/jasms.2c00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
By casting the information regarding an ion population's mobility in the frequency domain, the coupling of time-dispersive ion mobility techniques is now imminently compatible with slower mass analyzers such as ion traps. Recent reports have detailed the continued progress toward maximizing the efficiency of the Fourier transform ion mobility-mass spectrometry (FT-IM-MS) experiments, but few reports have outlined the intersection between the practical considerations of implementation against the theoretical limits imposed by traditional signal processing techniques. One of the important concerns for Fourier-based multiplexing experiments is avoiding signal aliasing as a product of undersampled signals that may occur during data acquisition. In addition to traditional considerations such as detector sampling frequency, the limitations (i.e., maximum measurable drift time) imposed by experimental mass scan duration and the frequency sweep used for ion gate modulation must also be assessed. This work aims to connect the fundamental underpinnings of FT-IM-MS experiments and the associated experimental parameters that are encountered when coupling the comparatively fast separations in the mobility domain with the slower m/z scanning common for ion-trap mass analyzers. In addition to stating the relevant theory that applies to the FT-IM-MS experiment, this report highlights how aliased signals will manifest post Fourier transform in reconstructed arrival time distributions and calculated mobilities.
Collapse
Affiliation(s)
- Elvin R. Cabrera
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|