1
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-Chain Amino Acid Catabolism Promotes Ovarian Cancer Cell Proliferation via Phosphorylation of mTOR. CANCER RESEARCH COMMUNICATIONS 2025; 5:569-579. [PMID: 40066850 PMCID: PMC11973964 DOI: 10.1158/2767-9764.crc-24-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE This study uncovers altered amino acid metabolism, specifically increased BCAA catabolism, at the interface of ovarian cancer cells and omental tissue in a coculture model of HGSOC secondary metastasis. Enhanced BCAA catabolism promotes cancer cell proliferation through mTOR signaling, presenting potential therapeutic value. These findings deepen our understanding of HGSOC pathogenesis and the metastatic tumor microenvironment, offering insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
2
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618560. [PMID: 39464074 PMCID: PMC11507863 DOI: 10.1101/2024.10.15.618560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread. In this study, we adapted a mass spectrometry imaging (MSI) protocol to investigate spatial location of 3D cocultures of tumorigenic FTE cells when grown in proximity to murine omental explants as a model of early metastatic colonization. Our analysis revealed several altered metabolites in tumorigenic FTE/omentum cocultures, namely changes in branched-chain amino acids (BCAA), including valine. We quantified the heightened consumption of valine, other BCAAs, and other amino acid-derived metabolites in omental cocultures using LC-MS assays. Our analysis revealed that metabolite concentrations when monitored with MSI from cell culture media in living culture systems have notable considerations for how MSI data may produce signatures that induce ionization suppression. Supplementation with valine enhanced proliferation and mTOR signaling in tumorigenic FTE cells, suggesting the potential of BCAA's as a nutrient utilized by tumor cells during omental colonization and a possible target for metastasis.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
3
|
Chadha R, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet
S Chadha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Jason A. Guerrero
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| |
Collapse
|
4
|
Zou X, Hui Z, Shepherd RA, Zhao S, Wu Y, Shen Z, Pang C, Zhou S, Yu Z, Zhou J, Moore BS, Sanchez LM, Tang X. Unveiling a CAAX Protease-Like Protein Involved in Didemnin Drug Maturation and Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306044. [PMID: 38032137 PMCID: PMC10811503 DOI: 10.1002/advs.202306044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Indexed: 12/01/2023]
Abstract
The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.
Collapse
Affiliation(s)
- Xiaolin Zou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zhen Hui
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Robert A. Shepherd
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Shuaiqiang Zhao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yanfei Wu
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhuanglin Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Pang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Shipeng Zhou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zehai Yu
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Bradly S. Moore
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCA92093USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCA92093USA
| | - Laura M. Sanchez
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Xiaoyu Tang
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| |
Collapse
|
5
|
Bergsten TM, Levy SE, Zink KE, Lusk HJ, Pergande MR, Cologna SM, Burdette JE, Sanchez LM. Fallopian tube secreted protein affects ovarian metabolites in high grade serous ovarian cancer. Front Cell Dev Biol 2022; 10:1042734. [PMID: 36420136 PMCID: PMC9676663 DOI: 10.3389/fcell.2022.1042734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
High grade serous ovarian cancer (HGSOC), the most lethal histotype of ovarian cancer, frequently arises from fallopian tube epithelial cells (FTE). Once transformed, tumorigenic FTE often migrate specifically to the ovary, completing the crucial primary metastatic step and allowing the formation of the ovarian tumors after which HGSOC was originally named. As only the fimbriated distal ends of the fallopian tube that reside in close proximity to the ovary develop precursor lesions such as serous tubal intraepithelial carcinomas, this suggests that the process of transformation and primary metastasis to the ovary is impacted by the local microenvironment. We hypothesize that chemical cues, including small molecules and proteins, may help stimulate the migration of tumorigenic FTE to the ovary. However, the specific mediators of this process are still poorly understood, despite a recent growth in interest in the tumor microenvironment. Our previous work utilized imaging mass spectrometry (IMS) to identify the release of norepinephrine (NE) from the ovary in co-cultures of tumorigenic FTE cells with an ovarian explant. We predicted that tumorigenic FTE cells secreted a biomolecule, not produced or produced with low expression by non-tumorigenic cells, that stimulated the ovary to release NE. As such, we utilized an IMS mass-guided bioassay, using NE release as our biological marker, and bottom-up proteomics to demonstrate that a secreted protein, SPARC, is a factor produced by tumorigenic FTE responsible for enhancing release of ovarian NE and influencing primary metastasis of HGSOC. This discovery highlights the bidirectional interplay between different types of biomolecules in the fallopian tube and ovarian microenvironment and their combined roles in primary metastasis and disease progression.
Collapse
Affiliation(s)
- Tova M. Bergsten
- Burdette Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Sarah E. Levy
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States
| | - Katherine E. Zink
- Sanchez Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Hannah J. Lusk
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States
| | - Melissa R. Pergande
- Cologna Lab, University of Illinois Chicago, Department of Chemistry, Chicago, IL, United States
| | - Stephanie M. Cologna
- Cologna Lab, University of Illinois Chicago, Department of Chemistry, Chicago, IL, United States
| | - Joanna E. Burdette
- Burdette Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States,*Correspondence: Joanna E. Burdette, ; Laura M. Sanchez,
| | - Laura M. Sanchez
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States,*Correspondence: Joanna E. Burdette, ; Laura M. Sanchez,
| |
Collapse
|