1
|
Goodwin JV, Shrestha S, Manard BT, Marcus RK. Complete resolution across the neodymium/samarium isotopic envelope with a liquid sampling-atmospheric pressure glow discharge - Orbitrap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9912. [PMID: 39262140 DOI: 10.1002/rcm.9912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE Nd and Sm isotope ratios play an important role in geological dating and as nuclear forensic signatures; however, the overlap of the respective 144, 148, 150 Nd/Sm isobars requires prior separations to be performed before analysis on typical MS platforms. The work presented here overcomes these isobaric interferences using ultrahigh-mass resolution to alleviate interference without prior chemical separations. METHODS A liquid sampling-atmospheric pressure glow discharge ion source was coupled to a standard, QExactive Focus Orbitrap mass spectrometer, providing a mass resolution of ~80 k. A Spectroswiss FTMS booster X2 data acquisition package was used to collect extended transients, providing much higher mass resolution; ~230 k and ~600 k are employed here for Nd and Sm isotopes. RESULTS While the standard Orbitrap resolution is far greater than typical "atomic" MS platforms, it was insufficient to alleviate all isobars. The use of a resolution of ~230 k resulted in baseline separation across the entire isotopic envelope for both Nd and Sm. Isotope ratios obtained from Nd:Sm mixtures using high-resolution were equivalent to those found for individual-element solutions, while isotope ratios obtained at a resolution of ~80 k (standard for the OEM data system) showed large deviations. CONCLUSIONS Use of ultrahigh-resolution is an attractive alternative to extensive chemical separations to alleviate severe isobaric interferences. Sufficient mass resolution greatly reduces/eliminates the need for sample manipulations (separations) before analysis while reducing costs and total analysis times.
Collapse
Affiliation(s)
- Joseph V Goodwin
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Suraj Shrestha
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Benjamin T Manard
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| |
Collapse
|
2
|
Leach FE, Nagornov KO, Kozhinov AN, Tsybin YO. External Data Systems Enable Enhanced (and Sustainable) Fourier Transform Mass Spectrometry Imaging for Legacy Hybrid Linear Ion Trap-Orbitrap Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2690-2698. [PMID: 39031087 PMCID: PMC11544700 DOI: 10.1021/jasms.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Legacy Fourier transform (FT) mass spectrometers provide robust platforms for bioanalytical mass spectrometry (MS) yet lack the most modern performance capabilities. For many laboratories, the routine investment in next generation instrumentation is cost prohibitive. Field-based upgrades provide a direct path to extend the usable lifespan of MS platforms which may be considered antiquated based on performance specifications at the time of manufacture. Here we demonstrate and evaluate the performance of a hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer that has been enhanced via an external high-performance data acquisition and processing system to provide true absorption mode FT processing during an experimental acquisition. For the application to mass spectrometry imaging, several performance metrics have been improved including mass resolving power, mass accuracy, and dynamic range to provide an FTMS system comparable to current platforms. We also demonstrate, perhaps, the unexpected ability of these legacy platforms to detect usable time-domain signals up to 5 s in duration to achieve a mass resolving power 8× higher than the original platform specification.
Collapse
Affiliation(s)
- Franklin E. Leach
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | | | | |
Collapse
|
3
|
Masucci C, Nagornov KO, Kozhinov AN, Kraft K, Tsybin YO, Bleiner D. Evaluation of atmospheric-plasma-source absorption mode Fourier transform Orbitrap mass spectrometry for chlorinated paraffin mixtures. Anal Bioanal Chem 2024; 416:5133-5144. [PMID: 39138657 PMCID: PMC11377688 DOI: 10.1007/s00216-024-05450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Chlorinated paraffins (CP) are complex molecular mixtures occurring in a wide range of isomers and homologs of environmental hazards, whose analytical complexity demand advanced mass spectrometry (MS) methods for their characterization. The reported formation of chlorinated olefins (COs) and other transformation products during CP biotransformation and degradation can alter the MS analysis, increasing the high resolution required to distinguish CPs from their degradation products. An advanced setup hyphenating a plasma ionization source and an external high-performance data acquisition and processing system to the legacy hybrid LTQ Orbitrap XL mass spectrometer is reported. First, the study demonstrated the versatility of a liquid sampling atmospheric pressure glow discharge, as a soft ionization technique, for CP analysis. Second, enhanced resolution and sensitivity provided by the absorption mode Fourier transform spectral representation on this legacy mass spectrometer are shown. The developed Orbitrap-based platform allowed the detection of new isotopic clusters and CPs and COs to be distinguished at medium resolution (setting 30,000 at m/z 400, ~ 400 ms transients), and even chlorinated di-olefins (CdiOs) at higher resolution (setting 100,000 at m/z 400, ~ 1500 ms transients). Overall, such proof-of-principle instrumental improvements are promising for environmental and analytical research in the field of CP analysis.
Collapse
Affiliation(s)
- Claudia Masucci
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | - Kevin Kraft
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Davide Bleiner
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Lyutvinskiy Y, Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Meng Z, Zhang X, Saei AA, Fu T, Chamot-Rooke J, Tsybin YO, Makarov A, Zubarev RA. Adding Color to Mass Spectra of Biopolymers: Charge Determination Analysis (CHARDA) Assigns Charge State to Every Ion Peak. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:902-911. [PMID: 38609335 PMCID: PMC11066971 DOI: 10.1021/jasms.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z starting from z = 1 and color coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) data set, CHARDA aids peptide mass spectra interpretation by facilitating charge-state deconvolution of large ionic species in crowded regions, estimating z even in the absence of an isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust, and consistent with conventional FTMS and FTMS/MS data acquisition procedures. An effective charge-state resolution Rz ≥ 6 is obtained with the potential for further improvements.
Collapse
Affiliation(s)
- Yaroslav Lyutvinskiy
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | | | | | - Natalia Gasilova
- Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Zhaowei Meng
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Xuepei Zhang
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Amir Ata Saei
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Department
of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Centre for
Translational Microbiome Research, Department of Microbiology, Tumor
and Cell Biology, Karolinska Institutet, Stockholm 17165, Sweden
| | | | | | | | | | - Roman A. Zubarev
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M., Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- The National Medical Research
Center for Endocrinology, 115478 Moscow, Russia
| |
Collapse
|
5
|
Grgic A, Nagornov KO, Kozhinov AN, Michael JA, Anthony IG, Tsybin YO, Heeren RM, Ellis SR. Ultrahigh-Mass Resolution Mass Spectrometry Imaging with an Orbitrap Externally Coupled to a High-Performance Data Acquisition System. Anal Chem 2024; 96:794-801. [PMID: 38127459 PMCID: PMC10794996 DOI: 10.1021/acs.analchem.3c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool that enables molecular sample analysis while simultaneously providing the spatial context of hundreds or even thousands of analytes. However, because of the lack of a separation step prior to ionization and the immense diversity of biomolecules, such as lipids, including numerous isobaric species, the coupling of ultrahigh mass resolution (UHR) with MSI presents one way in which this complexity can be resolved at the spectrum level. Until now, UHR MSI platforms have been restricted to Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Here, we demonstrate the capabilities of an Orbitrap-based UHR MSI platform to reach over 1,000,000 mass resolution in a lipid mass range (600-950 Da). Externally coupling the Orbitrap Q Exactive HF with the high-performance data acquisition system FTMS Booster X2 provided access to the unreduced data in the form of full-profile absorption-mode FT mass spectra. In addition, it allowed us to increase the time-domain transient length from 0.5 to 10 s, providing improvement in the mass resolution, signal-to-noise ratio, and mass accuracy. The resulting UHR performance generates high-quality MALDI MSI images and simplifies the identification of lipids. Collectively, these improvements resulted in a 1.5-fold increase in annotations, demonstrating the advantages of this UHR imaging platform for spatial lipidomics using MALDI-MSI.
Collapse
Affiliation(s)
- Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | | | - Jesse A. Michael
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ian G.M. Anthony
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
6
|
Koppenaal DW, Marcus RK. Coupling of the Liquid Sampling-Atmospheric Pressure Glow Discharge to Orbitrap Mass Analyzers for Uranium Isotope Ratio Analysis: Evolution of the Methodology and Implications to the Field. APPLIED SPECTROSCOPY 2023; 77:885-906. [PMID: 36636789 DOI: 10.1177/00037028221147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Just over a decade ago, a truly outside-of-the-box approach to isotope ratio mass spectrometry (IRMS) was undertaken between research groups at Clemson University and the Pacific Northwest National Laboratory. The original motivation dealt with projections as to whether or not microplasmas could be developed into practical elemental ionization sources, perhaps for transportable analysis applications. In particular, the use of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) was pursued. Its interfacing to an ultra-high resolution Orbitrap platform, proved not only facile, but opened up a wealth of potential applications. Here, we lay out a historical, tutorial description of the interfacing and the evolution of the methodology regarding IRMS of uranium. Practical challenges and opportunities are described, which hopefully provide guidance to further applications in high resolution IRMS. It is hoped that, while detailed and lengthy, the didactic nature of the presentation provides experimental insights and tips, and also serves as an homage to our very good friend, Professor Gary M. Hieftje, whose scientific inspiration and comradery have been immeasurably important in our own careers.
Collapse
|
7
|
Kozhinov AN, Johnson A, Nagornov KO, Stadlmeier M, Martin WL, Dayon L, Corthésy J, Wühr M, Tsybin YO. Super-Resolution Mass Spectrometry Enables Rapid, Accurate, and Highly Multiplexed Proteomics at the MS2 Level. Anal Chem 2023; 95:3712-3719. [PMID: 36749928 PMCID: PMC9974827 DOI: 10.1021/acs.analchem.2c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tandem mass spectrometry (MS2)-based multiplexed quantitative proteomics, the complement reporter ion approaches (TMTc and TMTproC) were developed to eliminate the ratio-compression problem of conventional MS2-level approaches. Resolving all high m/z complement reporter ions (∼6.32 mDa-spaced) requires mass resolution and scan speeds above the performance levels of OrbitrapTM instruments. Therefore, complement reporter ion quantification with TMT/TMTpro reagents is currently limited to 5 out of 11 (TMT) or 9 out of 18 (TMTpro) channels (∼1 Da spaced). We first demonstrate that a FusionTM LumosTM Orbitrap can resolve 6.32 mDa-spaced complement reporter ions with standard acquisition modes extended with 3 s transients. We then implemented a super-resolution mass spectrometry approach using the least-squares fitting (LSF) method for processing Orbitrap transients to achieve shotgun proteomics-compatible scan rates. The LSF performance resolves the 6.32 mDa doublets for all TMTproC channels in the standard mass range with transients as short as ∼108 ms (Orbitrap resolution setting of 50,000 at m/z 200). However, we observe a slight decrease in measurement precision compared to 1 Da spacing with the 108 ms transients. With 256 ms transients (resolution of 120,000 at m/z 200), coefficients of variation are essentially indistinguishable from 1 Da samples. We thus demonstrate the feasibility of highly multiplexed, accurate, and precise shotgun proteomics at the MS2 level.
Collapse
Affiliation(s)
| | - Alex Johnson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Michael Stadlmeier
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Warham Lance Martin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Loïc Dayon
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - John Corthésy
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | |
Collapse
|
8
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Advancing Orbitrap Measurements of Collision Cross Sections to Multiple Species for Broad Applications. Anal Chem 2022; 94:15613-15620. [DOI: 10.1021/acs.analchem.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D. Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Characterization of the Time-Domain Isotopic Beat Patterns of Monoclonal Antibodies in Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1113-1125. [PMID: 35638743 DOI: 10.1021/jasms.1c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The time-domain transients in the Fourier transform mass spectrometry (FTMS) analysis of monoclonal antibodies (mAbs) are known to exhibit characteristic isotopic beat patterns. These patterns are defined by the isotopic distributions of all gaseous mAb ions present in the FTMS mass analyzer, originating from single or multiple charge states, and from single or multiple proteoforms. For an isolated charge state of a single proteoform, the mAb isotopic beat pattern resembles narrow splashes of signal amplitude (beats), spaced periodically in the time-domain transient, with broad (often exceeding 1 s) "valleys" between them. Here, we reinforce the importance of isotopic beat patterns for the accurate interpretation and presentation of FTMS data in the analysis of mAbs and other large biopolymers. An updated, mAb-grade version of the transient-mediated FTMS data simulation and visualization tool, FTMS Simulator is introduced and benchmarked. We then apply this tool to evaluate the charge-state dependent characteristics of isotopic beats in mAbs analyses with modern models of Orbitrap and ion cyclotron resonance (ICR) FTMS instruments, including detection of higher-order harmonics. We demonstrate the impact of the isotopic beat patterns on the analytical characteristics of the resulting mass spectra of individual and overlapping mAb proteoforms. The results reported here detail highly nonlinear dependences of resolution and signal-to-noise ratio on the time-domain transient period, absorption or magnitude mode spectra representation, and apodization functions. The provided description and the demonstrated ability to routinely conduct accurate simulations of FTMS data for large biopolymers should aid the end-users of Orbitrap and ICR FTMS instruments in the analysis of mAbs and other biopolymers, including viruses.
Collapse
Affiliation(s)
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
10
|
Muz M, Rojo-Nieto E, Jahnke A. Removing Disturbing Matrix Constituents from Biota Extracts from Total Extraction and Silicone-Based Passive Sampling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2693-2704. [PMID: 34255885 DOI: 10.1002/etc.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Contaminant analysis in biota extracts can be hampered by matrix interferences caused by, for example, co-extracted lipids that compromise the quality of the analytical data and require frequent maintenance of the analytical instruments. In the present study, using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS), we aimed to develop and validate a straightforward, robust, and reproducible cleanup method with acceptable recoveries for diverse compound classes with a wide range of physicochemical properties representative of pollutant screening in biota extracts. We compared Oasis PRiME HLB cartridges, Agilent Captiva EMR-Lipid cartridges, and "Freeze-Out" with salmon lipids spiked with 113 target chemicals. The EMR-Lipid cartridges provided extracts with low matrix effects at reproducible recoveries of the multi-class target analytes (93 ± 9% and 95 ± 7% for low and high lipid amounts, respectively). The EMR-Lipid cartridges were further tested with spiked pork lipids submitted to total extraction or silicone-based passive sampling. Reproducible recoveries were achieved and matrix residuals were largely removed as demonstrated gravimetrically for both types of extracts. Ion suppression of halogenated compounds was not as efficiently removed by the cleanup of total and silicone-based extracts of pork lipids as for the salmon lipids. However, the samples with clean up provided better instrument robustness than those without cleanup. Hence, EMR-Lipid cartridges were shown to be efficient as a cleanup method in multi-class monitoring of biota samples and open up new possibilities as a suitable cleanup method for silicone extracts in biota passive sampling studies using GC-HRMS analysis. Environ Toxicol Chem 2021;40:2693-2704. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Melis Muz
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Nagornov KO, Gasilova N, Kozhinov AN, Virta P, Holm P, Menin L, Nesatyy VJ, Tsybin YO. Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody-Oligonucleotide Conjugates with Orbitrap Fourier Transform Mass Spectrometry. Anal Chem 2021; 93:12930-12937. [PMID: 34519496 DOI: 10.1021/acs.analchem.1c02247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy and pharmacokinetics of antibody-drug conjugates (ADCs) in general, and antibody-oligonucleotide conjugates (AOCs) in particular, depend on the drug-to-antibody ratio (DAR) distribution and average value. The DAR is considered a critical quality attribute, and information pertaining to it needs to be gathered during ADC/AOC development, production, and storage. However, because of the high structural complexity of ADC/AOC samples, particularly in the initial drug-development stages, the application of the current state-of-the-art mass spectrometric approaches can be limited for DAR analysis. Here, we demonstrate a novel approach for the analysis of complex ADC/AOC samples, following native size-exclusion chromatography Orbitrap Fourier transform mass spectrometry (FTMS). The approach is based on the integration of the proteoform-level mass spectral peaks in order to provide an estimate of the DAR distribution and its average value with less than 10% error. The peak integration is performed via a truncation of the Orbitrap's unreduced time-domain ion signals (transients) before mass spectra generation via FT processing. Transient recording and processing are undertaken using an external data acquisition system, FTMS Booster X2, coupled to a Q Exactive HF Orbitrap FTMS instrument. This approach has been applied to the analysis of whole and subunit-level trastuzumab conjugates with oligonucleotides. The obtained results indicate that ADC/AOC sample purification or simplification procedures, for example, deglycosylation, could be omitted or minimized prior to the DAR analysis, streamlining the drug-development process.
Collapse
Affiliation(s)
| | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Patrik Holm
- Protein and Antibody Engineering Unit, Orion Pharma, 20380 Turku, Finland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Victor J Nesatyy
- Protein and Antibody Engineering Unit, Orion Pharma, 20380 Turku, Finland
| | | |
Collapse
|
12
|
Kösling P, Rüger CP, Schade J, Fort KL, Ehlert S, Irsig R, Kozhinov AN, Nagornov KO, Makarov A, Rigler M, Tsybin YO, Walte A, Zimmermann R. Vacuum Laser Photoionization inside the C-trap of an Orbitrap Mass Spectrometer: Resonance-Enhanced Multiphoton Ionization High-Resolution Mass Spectrometry. Anal Chem 2021; 93:9418-9427. [PMID: 34170684 DOI: 10.1021/acs.analchem.1c01018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
State-of-the-art mass spectrometry with ultraviolet (UV) photoionization is mostly limited to time-of-flight (ToF) mass spectrometers with 1000-10 000 m/Δm mass resolution. However, higher resolution and higher spectral dynamic range mass spectrometry may be indispensable in complex mixture characterization. Here, we present the concept, implementation, and initial evaluation of a compact ultrahigh-resolution mass spectrometer with gas-phase laser ionization. The concept is based on direct laser photoionization in the ion accumulation and ejection trap (C-trap) of an Orbitrap mass spectrometer. Resonance-enhanced multiphoton ionization (REMPI) using 266 nm UV pulses from a frequency-quadrupled Nd:YAG laser was applied for selective and efficient ionization of monocyclic and polycyclic aromatic hydrocarbons. The system is equipped with a gas inlet for volatile compounds and a heated gas chromatography coupling. The former can be employed for rapid system m/z-calibration and performance evaluation, whereas the latter enables analysis of semivolatile and higher-molecular-weight compounds. The capability to evaluate complex mixtures is demonstrated for selected petrochemical materials. In these experiments, several hundred to over a thousand compounds could be attributed with a root-mean-square mass error generally below 1 ppm and a mass resolution of over 140 000 at 200 m/z. Isobaric interferences could be resolved, and narrow mass splits, such as 3.4 mDa (SH4/C3), are determined. Single laser shots provided limits of detection in the 20-ppb range for p-xylene and 1,2,4-trimethylbenzene, similar to compact vacuum REMPI-ToF systems.
Collapse
Affiliation(s)
- Paul Kösling
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Julian Schade
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | - Sven Ehlert
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | - Robert Irsig
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | | | | | | | | | | | | | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum Muenchen, Neuherberg D-85764, Germany
| |
Collapse
|
13
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
14
|
Bills JR, Nagornov KO, Kozhinov AN, Williams TJ, Tsybin YO, Marcus RK. Improved Uranium Isotope Ratio Analysis in Liquid Sampling-Atmospheric Pressure Glow Discharge/Orbitrap FTMS Coupling through the Use of an External Data Acquisition System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1224-1236. [PMID: 33793219 DOI: 10.1021/jasms.1c00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Isotope ratio (IR) analysis of natural abundance uranium presents a formidable challenge for mass spectrometry (MS): the required spectral dynamic range needs to enable the quantitatively accurate measurement of the 234UO2 species present at ∼0.0053% isotopic abundance. We address this by empowering a benchtop Orbitrap Fourier transform mass spectrometer (FTMS) coupled with the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ion source and an external high-performance data acquisition system, FTMS Booster X2. The LS-APGD microplasma has demonstrated impressive capabilities regarding elemental and IR analysis when coupled with Orbitrap FTMS. Despite successes, there are limitations regarding the dynamic range and mass resolution that stem from space charge effects and data acquisition and processing restrictions. To overcome these limitations, the FTMS Booster was externally interfaced to an LS-APGD Q Exactive Focus Orbitrap FTMS to obtain time-domain signals (transients) and to process unreduced data. The unreduced time-domain data acquisition with user-controlled processing permit the evaluation of the effects of in-hardware transient phasing, increased transient lengths, advanced transient coadding, varying the length of a transient to be processed with a user-defined time increment, and the use of absorption-mode FT (aFT) processing methods on IR analysis. The added capabilities extend the spectral dynamic range of the instrument to at least 4-5 orders of magnitude and provide a resolution improvement from ∼70k to 900k m/Δm at 200 m/z. The empowered LS-APGD Orbitrap platform allows for the simultaneous measurement of 234UO2 and the prominent 235UO2 and 238UO2 isotopic species at their natural abundances, ultimately yielding improvements in performance when compared to previous uranium IR results on this same Q Exactive Focus instrument.
Collapse
Affiliation(s)
- Jacob R Bills
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | - Tyler J Williams
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
15
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Transient-Mediated Simulations of FTMS Isotopic Distributions and Mass Spectra to Guide Experiment Design and Data Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1927-1942. [PMID: 32816459 DOI: 10.1021/jasms.0c00190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fourier transform mass spectrometry (FTMS) applications require accurate analysis of extremely complex mixtures of species in wide mass and charge state ranges. To optimize the related FTMS data analysis accuracy, parameters for data acquisition and the allied data processing should be selected rationally, and their influence on the data analysis outcome is to be understood. To facilitate this selection process and to guide the experiment design and data processing workflows, we implemented the underlying algorithms in a software tool with a graphical user interface, FTMS Isotopic Simulator. This tool computes FTMS data via time-domain data (transient) simulations for user-defined molecular species of interest and FTMS instruments, including diverse Orbitrap FTMS models, followed by user-specified FT processing steps. Herein, we describe implementation and benchmarking of this tool for analysis of a wide range of compounds as well as compare simulated and experimentally generated FTMS data. In particular, we discuss the use of this simulation tool for narrowband, broadband, and low- and high-resolution analysis of small molecules, peptides, and proteins, up to the level of their isotopic fine structures. By demonstrating the allied FT processing artifacts, we raise awareness of a proper selection of FT processing parameters for modern applications of FTMS, including intact mass analysis of proteoforms and top-down proteomics. Overall, the described transient-mediated approach to simulate FTMS data has proven useful for supporting contemporary FTMS applications. We also find its utility in fundamental FTMS studies and creating didactic materials for FTMS teaching.
Collapse
Affiliation(s)
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| |
Collapse
|