1
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
2
|
Fei M, Jin Y, Hu J, Dotsenko G, Ruan Y, Liu C, Seisenbaeva G, Andersson AAM, Andersson R, Sun C. Achieving of high-diet-fiber barley via managing fructan hydrolysis. Sci Rep 2022; 12:19151. [PMID: 36351972 PMCID: PMC9646770 DOI: 10.1038/s41598-022-21955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
High fructan content in the grain of cereals is an important trait in agriculture such as environmental resilience and dietary fiber food production. To understand the mechanism in determining final grain fructan content and achieve high fructan cereal, a cross breeding strategy based on fructan synthesis and hydrolysis activities was set up and have achieved barley lines with 11.8% storage fructan in the harvested grain. Our study discovered that high activity of fructan hydrolysis at later grain developmental stage leads to the low fructan content in mature seeds, simultaneously increasing fructan synthesis at early stage and decreasing fructan hydrolysis at later stage through crossing breeding is an efficient way to elevate grain diet-fiber content. A good correlation between fructan and beta glucans was also discovered with obvious interest. Field trials showed that the achieved high fructan barley produced over seven folds higher fructan content than control barley and pull carbon-flux to fructan through decreasing fructan hydrolysis without disruption starch synthesis will probably not bring yield deficiency.
Collapse
Affiliation(s)
- Mingliang Fei
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Yunkai Jin
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Jia Hu
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Gleb Dotsenko
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Ying Ruan
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Chunlin Liu
- grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Gulaim Seisenbaeva
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Annica A. M. Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Roger Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
3
|
Alkay Z, Yılmaz MT, Can AM, İspirli H, Dertli E. The effect of flours of different immature cereal grains on sourdough and sourdough bread: microbiological, rheological, textural and sugar profiles. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zühal Alkay
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| | - Mustafa Tahsin Yılmaz
- Department of Industrial Engineering King Abdulaziz University, Faculty of Engineering Jeddah Saudi Arabia
| | - Aslı Muslu Can
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
- Department of Food Technology İstanbul Gelişim Vocational School, Gelişim University İstanbul Turkey
| | - Hümeyra İspirli
- Bayburt University, Central Research Laboratory Bayburt Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| |
Collapse
|
4
|
Kulathunga J, Reuhs BL, Simsek S. A review: Novel trends in hulled wheat processing for value addition. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Hogg AC, Giroux MJ. Milling and baking quality of hexaploid spring wheat starch synthase IIa ( ssIIa) mutants with elevated amylose content. Cereal Chem 2019. [DOI: 10.1002/cche.10153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| |
Collapse
|
6
|
Lazare S, Burgos A, Brotman Y, Zaccai M. The metabolic (under)groundwork of the lily bulb toward sprouting. PHYSIOLOGIA PLANTARUM 2018; 163:436-449. [PMID: 29274128 DOI: 10.1111/ppl.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Large bulbs of Lilium longiflorum have an obligatory cold requirement to flower. Bulb cooling is widely used to induce and accelerate flowering. However, in-depth investigations of the effect of bulb cooling on major landmarks of plant development are lacking. It has been demonstrated that low temperature induces carbohydrate degradation, yet integrative studies on metabolic changes occurring in the bulb are not available. We detected that cold exposure mainly hastened bulb sprouting, rather than floral transition or blooming. Metabolite profiling of cooled and non-cooled bulbs was carried out, revealing cold-induced accumulation of soluble sugars, lipids and specific amino acids, and a significant reduction in tricarboxylic acid (TCA)-cycle elements. We observed that metabolic pathways located in the cytosol - including glycolysis, lipid synthesis and part of the gamma-Aminobutyric acid (GABA) shunt - were enhanced by cold exposure, while mitochondrial metabolism - namely the TCA cycle - was reduced by cold. We suggest a physiological model accounting for this metabolic discrepancy.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Asdrubal Burgos
- Laboratorio de Biotecnología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, CP 15110, Zapopan, Jalisco, Mexico
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnol Adv 2018; 36:954-967. [PMID: 29499342 DOI: 10.1016/j.biotechadv.2018.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
8
|
Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:937. [PMID: 30013590 PMCID: PMC6036604 DOI: 10.3389/fpls.2018.00937] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Micronutrient deficiency, also known as "hidden hunger," is an increasingly serious global challenge to humankind. Among the mineral elements, Fe (Iron) and Zn (Zinc) have earned recognition as micronutrients of outstanding and diverse biological relevance, as well as of clinical importance to global public health. The inherently low Fe and Zn content and poor bioavailability in cereal grains seems to be at the root of these mineral nutrient deficiencies, especially in the developing world where cereal-based diets are the most important sources of calories. The emerging physiological and molecular understanding of the uptake of Fe and Zn and their translocation in cereal grains regrettably also indicates accumulation of other toxic metals, with chemically similar properties, together with these mineral elements. This review article emphasizes breeding to develop bioavailable Fe- and Zn-efficient cereal cultivars to overcome malnutrition while minimizing the risks of toxic metals. We attempt to critically examine the genetic diversity regarding these nutritionally important traits as well as the progress in terms of quantitative genetics. We sought to integrate findings from the rhizosphere with Fe and Zn accumulation in grain, and to discuss the promoters as well as the anti-nutritional factors affecting Fe and Zn bioavailability in humans while restricting the content of toxic metals.
Collapse
Affiliation(s)
- Ana Luisa Garcia-Oliveira
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- *Correspondence: Ana Luisa Garcia-Oliveira
| | - Subhash Chander
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Rodomiro Ortiz
| | - Abebe Menkir
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
9
|
Zhou W, Wang X, Zhou D, Ouyang Y, Yao J. Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:568-580. [PMID: 27775871 PMCID: PMC5399008 DOI: 10.1111/pbi.12654] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/20/2016] [Indexed: 05/02/2023]
Abstract
Increasing grain yield and improving grain quality are two important goals for rice breeding. A better understanding of the factors that contribute to the overall grain quantity and nutritional quality of rice will lay the foundation for developing new breeding strategies. RAG2 is a member of 14-to-16-kDa α-amylase/trypsin inhibitors in rice, which belong to the albumin of seed storage proteins. We found that RAG2 was specifically expressed in ripening seed and its transcription peak was between 14 and 21 days after flowering. Grain size and 1000-grain weight were obviously increased in RAG2-overexpressed lines compared with wild type, and grain size was reduced in RAG2-suppressed lines. In addition, the major storage substances of the seeds differed significantly in RAG2-overexpressed and RAG2-suppressed lines compared to wild type. The protein content and amount of total lipids were increased and decreased, respectively, in the seeds of RAG2-overexpressed and RAG2-suppressed lines. Overexpression of RAG2 significantly increased grain size and improved grain quality and yield simultaneously. These results imply that RAG2 might play an important role in regulating grain weight and seed quality of rice. The functional characterization of rice RAG2 facilitates a further understanding of the mechanisms involved in grain size and seed quality and may be helpful in improving grain yield and quantity in cereal crops.
Collapse
Affiliation(s)
- Wei Zhou
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Jialing Yao
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
10
|
Li X, Cavanagh C, Verbyla K, Thistleton JL, Wang H, Pedler A, Kooij-Liu P, Li Z, Jobling SA. A modified Megazyme fructan assay for rapidly screening wheat starch synthase IIa mutation populations reveals high fructan accumulation in mature grains of triple null lines. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2016.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Ziegler JU, Steiner D, Longin CFH, Würschum T, Schweiggert RM, Carle R. Wheat and the irritable bowel syndrome – FODMAP levels of modern and ancient species and their retention during bread making. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Inokuma T, Vrinten P, Shimbata T, Sunohara A, Ito H, Saito M, Taniguchi Y, Nakamura T. Using the Hexaploid Nature of Wheat To Create Variability in Starch Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:941-947. [PMID: 26808423 DOI: 10.1021/acs.jafc.5b05099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In hexaploid crops, such as bread wheat, it should be possible to fine-tune phenotypic traits by identifying wild-type and null genes from each of the three genomes and combining them in a calculated manner. Here, we demonstrate this with gene combinations for two starch synthesis genes, SSIIa and GBSSI. Lines with inactive copies of both enzymes show a very dramatic change in phenotype, so to create intermediate phenotypes, we used marker-assisted selection to develop near-isogenic lines (NILs) carrying homozygous combinations of null alleles. For both genes, gene dosage effects follow the order B > D ≥ A; therefore, we completed detailed analysis of starch characteristics for NIL 3-3, which is null for the B-genome copy of the SSIIa and GBSSI genes, and NIL 5-5, which has null mutations in the B- and D-genome-encoded copies of both of these genes. The effects of the combinations on phenotypic traits followed the order expected on the basis of genotype, with NIL 5-5 showing the largest differences from the wild type, while NIL 3-3 characteristics were intermediate between NIL 5-5 and the wild type. Differences among genotypes were significant for many starch characteristics, including percent amylose, chain length distribution, gelatinization temperature, retrogradation, and pasting properties, and these differences appeared to translate into improvements in end-product quality, since bread made from type 5-5 flour showed a 3 day lag in staling.
Collapse
Affiliation(s)
- Takayuki Inokuma
- Nippon Flour Mills Company, Limited , Atsugi, Kanagawa 243-0041, Japan
| | - Patricia Vrinten
- Bioriginal Food & Science Corporation , Saskatoon, Saskatchewan S7J 0R1, Canada
| | - Tomoya Shimbata
- Nippon Flour Mills Company, Limited , Atsugi, Kanagawa 243-0041, Japan
| | - Ai Sunohara
- Nippon Flour Mills Company, Limited , Atsugi, Kanagawa 243-0041, Japan
| | - Hiroyuki Ito
- Tohoku National Agriculture Research Center , Morioka, Iwate 020-0198, Japan
| | - Mika Saito
- Tohoku National Agriculture Research Center , Morioka, Iwate 020-0198, Japan
| | - Yoshinori Taniguchi
- Tohoku National Agriculture Research Center , Morioka, Iwate 020-0198, Japan
| | - Toshiki Nakamura
- Tohoku National Agriculture Research Center , Morioka, Iwate 020-0198, Japan
| |
Collapse
|
13
|
Gélinas P, McKinnon C, Gagnon F. Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancient and modern wheat. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.13022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pierre Gélinas
- Agriculture and Agri-Food Canada; Food Research and Development Centre; Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Carole McKinnon
- Agriculture and Agri-Food Canada; Food Research and Development Centre; Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Fleur Gagnon
- Agriculture and Agri-Food Canada; Food Research and Development Centre; Saint-Hyacinthe Quebec J2S 8E3 Canada
| |
Collapse
|
14
|
Shewry PR, Hey SJ. The contribution of wheat to human diet and health. Food Energy Secur 2015; 4:178-202. [PMID: 27610232 PMCID: PMC4998136 DOI: 10.1002/fes3.64] [Citation(s) in RCA: 519] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Wheat is the most important staple crop in temperate zones and is in increasing demand in countries undergoing urbanization and industrialization. In addition to being a major source of starch and energy, wheat also provides substantial amounts of a number of components which are essential or beneficial for health, notably protein, vitamins (notably B vitamins), dietary fiber, and phytochemicals. Of these, wheat is a particularly important source of dietary fiber, with bread alone providing 20% of the daily intake in the UK, and well-established relationships between the consumption of cereal dietary fiber and reduced risk of cardio-vascular disease, type 2 diabetes, and forms of cancer (notably colo-rectal cancer). Wheat shows high variability in the contents and compositions of beneficial components, with some (including dietary fiber) showing high heritability. Hence, plant breeders should be able to select for enhanced health benefits in addition to increased crop yield.
Collapse
Affiliation(s)
- Peter R Shewry
- Rothamsted Research Harpenden Hertfordshire AL5 2JQ UK; University of Reading Whiteknights Reading Berkshire RG6 6AH UK
| | - Sandra J Hey
- Rothamsted Research Harpenden Hertfordshire AL5 2JQ UK
| |
Collapse
|
15
|
Verspreet J, Dornez E, Van den Ende W, Delcour JA, Courtin CM. Cereal grain fructans: Structure, variability and potential health effects. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Verspreet J, Hemdane S, Dornez E, Cuyvers S, Delcour JA, Courtin CM. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1397-1404. [PMID: 23339519 DOI: 10.1021/jf3050846] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.
Collapse
Affiliation(s)
- Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven (KU Leuven) , Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Vrinten PL, Shimbata T, Yanase M, Sunohara A, Saito M, Inokuma T, Takiya T, Takaha T, Nakamura T. Properties of a novel type of starch found in the double mutant “sweet wheat”. Carbohydr Polym 2012; 89:1250-60. [DOI: 10.1016/j.carbpol.2012.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/27/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
|
19
|
Murgia I, Arosio P, Tarantino D, Soave C. Biofortification for combating 'hidden hunger' for iron. TRENDS IN PLANT SCIENCE 2012; 17:47-55. [PMID: 22093370 DOI: 10.1016/j.tplants.2011.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/14/2011] [Accepted: 10/07/2011] [Indexed: 05/20/2023]
Abstract
Micronutrient deficiencies are responsible for so-called 'hidden undernutrition'. In particular, iron (Fe) deficiency adversely affects growth, immune function and can cause anaemia. However, supplementation of iron can exacerbate infectious diseases and current policies of iron therapy carefully evaluate the risks and benefits of these interventions. Here we review the approaches of biofortification of valuable crops for reducing 'hidden undernutrition' of iron in the light of the latest nutritional and medical advances. The increase of iron and prebiotics in edible parts of plants is expected to improve health, whereas the reduction of phytic acid concentration, in crops valuable for human diet, might be less beneficial for the developed countries, or for the developing countries exposed to endemic infections.
Collapse
Affiliation(s)
- Irene Murgia
- Sezione di Fisiologia e Biochimica delle Piante, Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | |
Collapse
|