1
|
Liu S, Xu H, Wang G, Jin B, Cao F, Wang L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. PLANT, CELL & ENVIRONMENT 2025; 48:244-259. [PMID: 39254418 DOI: 10.1111/pce.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.
Collapse
Affiliation(s)
- Sian Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wang H, Shi M, Cao F, Su E. Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Res Int 2022; 160:111637. [DOI: 10.1016/j.foodres.2022.111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
|
3
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
4
|
Tong G, Baker MA, Shenvi RA. Change the channel: CysLoop receptor antagonists from nature. PEST MANAGEMENT SCIENCE 2021; 77:3650-3662. [PMID: 33135373 PMCID: PMC8087819 DOI: 10.1002/ps.6166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 05/04/2023]
Abstract
Vertebrate and invertebrate ligand-gated ion channels (LGICs) exhibit significant structural homology and often share ligands. As a result, ligands with activity against one class can be brought to bear against another, including for development as insecticides. Receptor selectivity, metabolism and distribution must then be optimized using chemical synthesis. Here we review natural products (NPs) that ligate and inhibit the Cys-loop family of LGICs, which benefit from the unique physicochemical properties of natural product space but often present a high synthetic burden. Recent advances in chemical synthesis, however, have opened practical entries into these complex structures, several of which are highlighted. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Meghan A Baker
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
5
|
Cui N, Zhang L, Quan M, Xu J. Profile of the main bioactive compounds and in vitro biological activity of different solvent extracts from Ginkgo biloba exocarp. RSC Adv 2020; 10:45105-45111. [PMID: 35516276 PMCID: PMC9058656 DOI: 10.1039/d0ra09490k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 12/03/2022] Open
Abstract
In order to make good use of Ginkgo biloba exocarps as agricultural residues, the present work was conducted aiming to evaluate the main bioactive compounds and in vitro biological activities of different solvent (petroleum ether, ethyl acetate, n-hexane, acetone, ethanol, and methanol) Ginkgo biloba exocarp extracts. The methanol extracts with the highest content of total phenolics and total flavonoids showed the strongest antioxidant and antibacterial activities. n-Hexane extracts had the lowest total phenolics, flavonoids and antioxidant activities, however, it exhibited moderately high antibacterial activities compared to other extracts. More interestingly, the n-hexane extracts with the highest ginkgolic acid content had the strongest inhibitory ability on HepG2 cell viability, and then ethyl acetate, petroleum ether, acetone, ethanol, and methanol extracts. The results showed that bioactive compounds and biological activities of extracts from Ginkgo biloba exocarp were greatly affected by the extraction solvents. Therefore, the selective extraction from Ginkgo biloba exocarp is very important for processing and comprehensive utilization of Ginkgo biloba exocarp. The extraction solvents had significant effects on total phenolics and flavonoids content in extracts from Ginkgo biloba exocarp.![]()
Collapse
Affiliation(s)
- Na Cui
- School of Food Science, Shanxi Normal University Linfen 041004 China
| | - Liangliang Zhang
- School of Food Science, Shanxi Normal University Linfen 041004 China
| | - Meiping Quan
- College of Environment and Life Science, Weinan Normal University Weinan 714000 China
| | - Jianguo Xu
- School of Food Science, Shanxi Normal University Linfen 041004 China
| |
Collapse
|
6
|
Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (-)-Bilobalide. J Am Chem Soc 2020; 142:18599-18618. [PMID: 32991152 PMCID: PMC7727090 DOI: 10.1021/jacs.0c08231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.
Collapse
Affiliation(s)
- Robert M. Demoret
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Meghan A. Baker
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Masaki Ohtawa
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ching Ching Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Stefano Forli
- DISCoBio, Scripps Research, La Jolla, California 92037, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Zhu Y, Zhang R, Zhang B, Zhao T, Wang P, Liang G, Cheng G. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat Commun 2017; 8:1262. [PMID: 29093445 PMCID: PMC5665997 DOI: 10.1038/s41467-017-01244-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are hematophagous insects that carry-on and transmit many human viruses. However, little information is available regarding the common mechanisms underlying the infection of mosquitoes by these viruses. In this study, we reveal that the hematophagous nature of mosquitoes contributes to arboviral infection after a blood meal, which suppresses antiviral innate immunity by activating the GABAergic pathway. dsRNA-mediated interruption of the GABA signaling and blockage of the GABAA receptor by the specific inhibitors both significantly impaired arbovirus replication. Consistently, inoculation of GABA enhanced arboviral infection, indicating that GABA signaling facilitates the arboviral infection of mosquitoes. The ingestion of blood by mosquitoes resulted in robust GABA production from glutamic acid derived from blood protein digestion. The oral introduction of glutamic acid increased virus acquisition by mosquitoes via activation of the GABAergic system. Our study reveals that blood meals enhance arbovirus replication in mosquitoes through activation of the GABAergic system. Transmission of many human viruses depends on replication in their mosquito vectors. Here, Zhu et al. show that glutamic acid digested from the blood meal activates GABA signaling, resulting in suppression of antiviral innate immunity and increased virus replication in mosquitoes.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of pathogenic organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Rudian Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Bei Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Penghua Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310000, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of pathogenic organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Pan L, Ren L, Chen F, Feng Y, Luo Y. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications. PLoS One 2016; 11:e0155682. [PMID: 27214257 PMCID: PMC4877087 DOI: 10.1371/journal.pone.0155682] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P.R. of China
| | - Lili Ren
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P.R. of China
| | - Fang Chen
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P.R. of China
| | - Yuqian Feng
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P.R. of China
| | - Youqing Luo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, P.R. of China
| |
Collapse
|
9
|
Lee H, Lim H, Yang J, Hong J. Rapid Determination of Ginkgolic Acids in Ginkgo biloba Leaf Using Online Column Switching High-Performance Liquid Chromatography-Diode Array Detection and Confirmation by Liquid Chromatography-tandem Mass Spectrometry. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Mohanta TK, Occhipinti A, Atsbaha Zebelo S, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS One 2012; 7:e32822. [PMID: 22448229 PMCID: PMC3308967 DOI: 10.1371/journal.pone.0032822] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses. Methodology/Principal Findings Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca2+]cyt and H2O2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides. Conclusions/Significance By studying early and late responses of G. biloba to herbivory, we provided the first evidence that this “living fossil” plant responds to herbivory with the same defense mechanisms adopted by the most recent angiosperms.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Andrea Occhipinti
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Simon Atsbaha Zebelo
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Maria Foti
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Judith Fliegmann
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
| | - Simone Bossi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
- * E-mail:
| | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| |
Collapse
|