1
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
2
|
Ibaba JD, Gubba A. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, A Decade Later. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1376. [PMID: 33081084 PMCID: PMC7602839 DOI: 10.3390/plants9101376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing (HTS) application in the field of plant virology started in 2009 and has proven very successful for virus discovery and detection of viruses already known. Plant virology is still a developing science in most of Africa; the number of HTS-related studies published in the scientific literature has been increasing over the years as a result of successful collaborations. Studies using HTS to identify plant-infecting viruses have been conducted in 20 African countries, of which Kenya, South Africa and Tanzania share the most published papers. At least 29 host plants, including various agricultural economically important crops, ornamentals and medicinal plants, have been used in viromics analyses and have resulted in the detection of previously known viruses and novel ones from almost any host. Knowing that the effectiveness of any management program requires knowledge on the types, distribution, incidence, and genetic of the virus-causing disease, integrating HTS and efficient bioinformatics tools in plant virology research projects conducted in Africa is a matter of the utmost importance towards achieving and maintaining sustainable food security.
Collapse
Affiliation(s)
- Jacques Davy Ibaba
- Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences, Agriculture Campus, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| | | |
Collapse
|
3
|
Rodrigues TB, Petrick JS. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. FRONTIERS IN PLANT SCIENCE 2020; 11:407. [PMID: 32391029 PMCID: PMC7191066 DOI: 10.3389/fpls.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 05/13/2023]
Abstract
The potential of double-stranded RNAs (dsRNAs) for use as topical biopesticides in agriculture was recently discussed during an OECD (Organisation for Economic Co-operation and Development) Conference on RNA interference (RNAi)-based pesticides. Several topics were presented and these covered different aspects of RNAi technology, its application, and its potential effects on target and non-target organisms (including both mammals and non-mammals). This review presents information relating to RNAi mechanisms in vertebrates, the history of safe RNA consumption, the biological barriers that contribute to the safety of its consumption, and effects related to humans and other vertebrates as discussed during the conference. We also review literature related to vertebrates exposed to RNA molecules and further consider human health safety assessments of RNAi-based biopesticides. This includes possible routes of exposure other than the ingestion of potential residual material in food and water (such as dermal and inhalation exposures during application in the field), the implications of different types of formulations and RNA structures, and the possibility of non-specific effects such as the activation of the innate immune system or saturation of the RNAi machinery.
Collapse
|
4
|
Mcloughlin AG, Walker PL, Wytinck N, Sullivan DS, Whyard S, Belmonte MF. Developing new RNA interference technologies to control fungal pathogens. CANADIAN JOURNAL OF PLANT PATHOLOGY 2018; 40:325-335. [PMID: 0 DOI: 10.1080/07060661.2018.1495268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Affiliation(s)
- Austein G. Mcloughlin
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Philip L. Walker
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nick Wytinck
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Daniel S. Sullivan
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop. Regul Toxicol Pharmacol 2016; 82:127-139. [DOI: 10.1016/j.yrtph.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
|
6
|
Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regul Toxicol Pharmacol 2016; 81:77-88. [PMID: 27494948 DOI: 10.1016/j.yrtph.2016.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
MON 87411 maize, which expresses DvSnf7 RNA, was developed to provide an additional mode of action to confer protection against corn rootworm (Diabrotica spp.). A critical step in the registration of a genetically engineered crop with an insecticidal trait is performing an ecological risk assessment to evaluate the potential for adverse ecological effects. For MON 87411, an assessment plan was developed that met specific protection goals by characterizing the routes and levels of exposure, and testing representative functional taxa that would be directly or indirectly exposed in the environment. The potential for toxicity of DvSnf7 RNA was evaluated with a harmonized battery of non-target organisms (NTOs) that included invertebrate predators, parasitoids, pollinators, soil biota as well as aquatic and terrestrial vertebrate species. Laboratory tests evaluated ecologically relevant endpoints such as survival, growth, development, and reproduction and were of sufficient duration to assess the potential for adverse effects. No adverse effects were observed with any species tested at, or above, the maximum expected environmental concentration (MEEC). All margins of exposure for NTOs were >10-fold the MEEC. Therefore, it is reasonable to conclude that exposure to DvSnf7 RNA, both directly and indirectly, is safe for NTOs at the expected field exposure levels.
Collapse
|
7
|
Petrick JS, Frierdich GE, Carleton SM, Kessenich CR, Silvanovich A, Zhang Y, Koch MS. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicology assessment in support of human and mammalian safety. Regul Toxicol Pharmacol 2016; 81:57-68. [PMID: 27436086 DOI: 10.1016/j.yrtph.2016.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/01/2023]
Abstract
Genetically modified (GM) crops have been developed and commercialized that utilize double stranded RNAs (dsRNA) to suppress a target gene(s), producing virus resistance, nutritional and quality traits. MON 87411 is a GM maize variety that leverages dsRNAs to selectively control corn rootworm through production of a 240 base pair (bp) dsRNA fragment targeting for suppression the western corn rootworm (Diabrotica virgifera virgifera) Snf7 gene (DvSnf7). A bioinformatics assessment found that endogenous corn small RNAs matched ∼450 to 2300 unique RNA transcripts that likely code for proteins in rat, mouse, and human, demonstrating safe dsRNA consumption by mammals. Mice were administered DvSnf7 RNA (968 nucleotides, including the 240 bp DvSnf7 dsRNA) at 1, 10, or 100 mg/kg by oral gavage in a 28-day repeat dose toxicity study. No treatment-related effects were observed in body weights, food consumption, clinical observations, clinical chemistry, hematology, gross pathology, or histopathology endpoints. Therefore, the No Observed Adverse Effect Level (NOAEL) for DvSnf7 RNA was 100 mg/kg, the highest dose tested. These results demonstrate that dsRNA for insect control does not produce adverse health effects in mammals at oral doses millions to billions of times higher than anticipated human exposures and therefore poses negligible risk to mammals.
Collapse
Affiliation(s)
- Jay S Petrick
- Monsanto Company, 800 North Lindbergh Boulevard, Creve Coeur, MO 63167, USA.
| | | | | | - Colton R Kessenich
- Monsanto Company, 800 North Lindbergh Boulevard, Creve Coeur, MO 63167, USA
| | - Andre Silvanovich
- Monsanto Company, 800 North Lindbergh Boulevard, Creve Coeur, MO 63167, USA
| | - Yuanji Zhang
- Monsanto Company, 800 North Lindbergh Boulevard, Creve Coeur, MO 63167, USA
| | - Michael S Koch
- Monsanto Company, 800 North Lindbergh Boulevard, Creve Coeur, MO 63167, USA
| |
Collapse
|
8
|
Sherman JH, Munyikwa T, Chan SY, Petrick JS, Witwer KW, Choudhuri S. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting. Regul Toxicol Pharmacol 2015; 73:671-80. [DOI: 10.1016/j.yrtph.2015.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|