1
|
Luque-Navarro PM, Carrasco-Jiménez MP, Goracci L, Paredes JM, Espinar-Barranco L, Valverde-Pozo J, Torretta A, Parisini E, Mariotto E, Marchioro C, Laso A, Marco C, Viola G, Lanari D, López Cara LC. New bioisosteric sulphur-containing choline kinase inhibitors with a tracked mode of action. Eur J Med Chem 2023; 246:115003. [PMID: 36493617 DOI: 10.1016/j.ejmech.2022.115003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Since the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series. Docking analysis using FLAP suggests that for hits to leads, binding mostly involves an interaction with the Mg2+ cofactor, or its destabilization. The most active compounds of the two series are capable of inducing apoptosis following the mitochondrial pathway and to significantly reduce the expression of anti-apoptotic proteins such as the Mcl-1. The fluorescence properties of the compounds of the PL library allowed the tracking of their mode of action, while PAINS (Pan Assays Interference Structures) filtration databases suggest the lack of any unspecific biological response.
Collapse
Affiliation(s)
- Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain; Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy
| | - M Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain.
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| | - Jose M Paredes
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Laura Espinar-Barranco
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Javier Valverde-Pozo
- Department of Physical-Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain
| | - Archimede Torretta
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy; Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia; Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Elena Mariotto
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy
| | - Chiara Marchioro
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy
| | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, Campus of Fuentenueva s/n, Granada, 18071, Spain
| | - Giampietro Viola
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica (IRP) Fondazione Città della Speranza, Corso Stati Uniti 4, Padova, 35128, Italy.
| | - Daniela Lanari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy.
| | - Luisa Carlota López Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, Granada, 18071, Spain.
| |
Collapse
|
2
|
Rubio-Ruiz B, Serrán-Aguilera L, Hurtado-Guerrero R, Conejo-García A. Recent advances in the design of choline kinase α inhibitors and the molecular basis of their inhibition. Med Res Rev 2020; 41:902-927. [PMID: 33103259 DOI: 10.1002/med.21746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Upregulated choline metabolism, characterized by an increase in phosphocholine (PCho), is a hallmark of oncogenesis and tumor progression. Choline kinase (ChoK), the enzyme responsible for PCho synthesis, has consequently become a promising drug target for cancer therapy and as such a significant number of ChoK inhibitors have been developed over the last few decades. More recently, due to the role of this enzyme in other pathologies, ChoK inhibitors have also been used in new therapeutic approaches against malaria and rheumatoid arthritis. Here, we review research results in the field of ChoKα inhibitors from their synthesis to the molecular basis of their binding mode. Strategies for the development of inhibitors and their selectivity on ChoKα over ChoKβ, the plasticity of the choline-binding site, the discovery of new exploitable binding sites, and the allosteric properties of this enzyme are highlighted. The outcomes summarized in this review will be a useful guide to develop new multifunctional potent drugs for the treatment of various human diseases.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Lucía Serrán-Aguilera
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.,Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.,Laboratorio de Microscopías Avanzada, University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| |
Collapse
|
3
|
Guo BB, Lin YJ, Jin GX. Design of and Stability Studies on Trefoil Knots Featuring RhCp* Building Blocks. Chemistry 2019; 25:9721-9727. [PMID: 31033058 DOI: 10.1002/chem.201901728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/25/2019] [Indexed: 01/17/2023]
Abstract
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D-shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil-rectangle shape transformation in solution.
Collapse
Affiliation(s)
- Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Antitumoral activity of 1,2-diaminocyclohexane derivatives in breast, colon and skin human cancer cells. Future Med Chem 2017; 9:293-302. [DOI: 10.4155/fmc-2016-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Cancer is among the leading causes of death worldwide. Medical interest has focused on macrocyclic polyamines because of their properties as antitumor agents. Results/Methodology: We have designed and synthesized a series of 1,2-diaminocyclohexane derivatives with notable in vitro antiproliferative activities against the MCF-7, HCT-116 and A375 cancer cell lines. Cell cycle and apoptosis analyses were also carried out. Our results show that all the compounds are potent cytotoxic agents, especially against the A375 cell line. Conclusion: The selective activity of the macrocyclic derivative against A375, via apoptosis, supposes a great advantage for future therapeutic use. This exemplifies the potential of 1,2-diaminocyclohexane derivatives to qualify as lead structures for future anticancer drug development due to their easy syntheses and noteworthy bioactivity.
Collapse
|
5
|
Arlauckas SP, Popov AV, Delikatny EJ. Choline kinase alpha-Putting the ChoK-hold on tumor metabolism. Prog Lipid Res 2016; 63:28-40. [PMID: 27073147 PMCID: PMC5360181 DOI: 10.1016/j.plipres.2016.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022]
Abstract
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Delikatny
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1). Sci Rep 2016; 6:23793. [PMID: 27029499 PMCID: PMC4814829 DOI: 10.1038/srep23793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023] Open
Abstract
A novel family of compounds derivative of 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or –bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.
Collapse
|
7
|
Serrán-Aguilera L, Nuti R, López-Cara LC, Mezo MÁG, Macchiarulo A, Entrena A, Hurtado-Guerrero R. Pharmacophore-Based Virtual Screening to Discover New Active Compounds for Human Choline Kinase α1. Mol Inform 2015; 34:458-66. [PMID: 27490389 DOI: 10.1002/minf.201400140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/10/2015] [Indexed: 01/12/2023]
Abstract
Choline kinase (CK) catalyses the transfer of the ATP γ-phosphate to choline to generate phosphocholine and ADP in the presence of magnesium leading to the synthesis of phosphatidylcholine. Of the three isoforms of CK described in humans, only the α isoforms (HsCKα) are strongly associated with cancer and have been validated as drug targets to treat this disease. Over the years, a large number of Hemicholinium-3 (HC-3)-based HsCKα biscationic inhibitors have been developed though the relevant common features important for the biological function have not been defined. Here, selecting a large number of previous HC-3-based inhibitors, we discover through computational studies a pharmacophore model formed by five moieties that are included in the 1-benzyl-4-(N-methylaniline)pyridinium fragment. Using a pharmacophore-guided virtual screening, we then identified 6 molecules that showed binding affinities in the low μM range to HsCKα1. Finally, protein crystallization studies suggested that one of these molecules is bound to the choline and ATP-binding sites. In conclusion, we have developed a pharmacophore model that not only allowed us to dissect the structural important features of the previous HC-3 derivatives, but also enabled the identification of novel chemical tools with good ligand efficiencies to investigate the biological functions of HsCKα1.
Collapse
Affiliation(s)
- Lucía Serrán-Aguilera
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, Granada 18071, Spain phone: +34 958 243848
| | - Roberto Nuti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, Granada 18071, Spain phone: +34 958 243848
| | - Miguel Á Gallo Mezo
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, Granada 18071, Spain phone: +34 958 243848
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
| | - Antonio Entrena
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, Granada 18071, Spain phone: +34 958 243848.
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI) and BIFI-IQFR (CSIC) Joint Unit, University of Zaragoza, Campus Río Ebro, Zaragoza 50018, Spain; Edificio I+D; Fundación ARAID, Edificio Pignatelli 36, Spain phones: +39 075 5855160; +34 976 762997.
| |
Collapse
|
8
|
Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 2015; 89:362-9. [DOI: 10.1016/j.ejmech.2014.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
9
|
Schiaffino-Ortega S, López-Cara LC, Ríos-Marco P, Carrasco-Jimenez MP, Gallo MA, Espinosa A, Marco C, Entrena A. New non-symmetrical choline kinase inhibitors. Bioorg Med Chem 2013; 21:7146-54. [DOI: 10.1016/j.bmc.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
10
|
Rubio-Ruíz B, Conejo-García A, Ríos-Marco P, Carrasco-Jiménez MP, Segovia J, Marco C, Gallo MA, Espinosa A, Entrena A. Design, synthesis, theoretical calculations and biological evaluation of new non-symmetrical choline kinase inhibitors. Eur J Med Chem 2012; 50:154-62. [PMID: 22348828 DOI: 10.1016/j.ejmech.2012.01.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 01/03/2023]
Abstract
Inhibition of Choline Kinase (ChoK) has been reported as a therapeutical target in the treatment of some kinds of tumor. In this paper, the design and synthesis of new non-symmetrical monocationic ChoK inhibitors is described, bearing a cationic head and an adenine moiety connected by linkers of different lengths. Docking studies indicate that the cationic head of these compounds could be inserted into the choline binding site of the enzyme, while the adenine moiety could be stabilized into the ATP binding site. Docking studies also support the difference of activity of the synthesized compounds, which depends on both the substituent at position 4 of the cationic head and the linker length, being dimethylamine and 1,4-diphenylbutane respectively, the most appropriate ones. Compounds 14 (IC(50) = 10.70 ± 0.40 μM) and 17 (IC(50) = 6.21 ± 0.97 μM) are the most potent ChoK inhibitors and suitable for further modification with a view to obtain more potent antitumor compounds.
Collapse
Affiliation(s)
- Belén Rubio-Ruíz
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muthusamy S, Karikalan T, Gunanathan C, Suresh E. Rhodium(II) catalyzed intermolecular double C-alkylation: a method for the synthesis of tetraindoles and indolophanes. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Gómez-Pérez V, McSorley T, See Too WC, Konrad M, Campos JM. Novel 4-amino bis-pyridinium and bis-quinolinium derivatives as choline kinase inhibitors with antiproliferative activity against the human breast cancer SKBR-3 cell line. ChemMedChem 2012; 7:663-9. [PMID: 22278967 DOI: 10.1002/cmdc.201100505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/15/2011] [Indexed: 01/01/2023]
Abstract
Choline kinase (ChoK) is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. Human ChoK has three isoforms: ChoKα1, α2, and β. Specific inhibition of ChoKα has been reported to selectively kill tumor cells. In this study, ten new symmetrical bis-pyridinium and bis-quinolinium derivatives were synthesized and tested for their ability to inhibit human ChoKα2. These compounds have electron-releasing groups at position 4 of the pyridinium or quinolinium rings. 1,1'-[(Butane-1,3-diylbis(benzene-1,4-diylmethylene)]bis[4-(4-bromo-N-methylanilino)pyridinium)] dibromide and 1,1'-(biphenyl-3,3'-diylmethylene)bis[7-chloro-4-(perhydroazepine-1-yl)quinolinium] dibromide were identified as highly potent ChoK inhibitors with IC(50) values of 80 nM. Kinetic enzymatic assays indicated a mixed and predominantly competitive mechanism of inhibition for these compounds, which exhibited strong antiproliferative activity (EC(50) 1 μM) against the human breast cancer SKBR3 cell line.
Collapse
Affiliation(s)
- Verónica Gómez-Pérez
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, c/ Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
13
|
Conejo-García A, Pisani L, del Carmen Núñez M, Catto M, Nicolotti O, Leonetti F, Campos JM, Gallo MA, Espinosa A, Carotti A. Homodimeric Bis-Quaternary Heterocyclic Ammonium Salts as Potent Acetyl- and Butyrylcholinesterase Inhibitors: A Systematic Investigation of the Influence of Linker and Cationic Heads over Affinity and Selectivity. J Med Chem 2011; 54:2627-45. [DOI: 10.1021/jm101299d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ana Conejo-García
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Leonardo Pisani
- Dipartimento Farmacochimico, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - Maria del Carmen Núñez
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Marco Catto
- Dipartimento Farmacochimico, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento Farmacochimico, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - Francesco Leonetti
- Dipartimento Farmacochimico, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Miguel A. Gallo
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Antonio Espinosa
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Angelo Carotti
- Dipartimento Farmacochimico, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
14
|
Panagopoulos AM, Zeller M, Becker DP. Synthesis of an ortho-Triazacyclophane: N,N′,N′′-Trimethyltribenzo-1,4,7-triazacyclononatriene. J Org Chem 2010; 75:7887-92. [DOI: 10.1021/jo1017074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andria M. Panagopoulos
- Department of Chemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| | - Matthias Zeller
- Department of Chemistry, 1 University Plaza, Youngstown State University, Youngstown, Ohio 44555-3663, United States
| | - Daniel P. Becker
- Department of Chemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
15
|
Optical and electronic properties of siloxane-bridged cyclic dimers with naphthylene or pyrenylene moieties. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Srivani P, Sastry GN. Potential choline kinase inhibitors: a molecular modeling study of bis-quinolinium compounds. J Mol Graph Model 2008; 27:676-88. [PMID: 19147382 DOI: 10.1016/j.jmgm.2008.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/10/2008] [Accepted: 10/27/2008] [Indexed: 11/19/2022]
Abstract
Choline kinase (ChoK) is reported to involve in cell signaling pathways and cell growth by regulating the intermediate, phosphocholine (PCho), which is the first step to biosynthesis a membrane phospholipid, phosphatidylcholine. The PCho levels are overexpressed due to elevated activation of the protein under carcinogenesis conditions. ChoK has thus evolved as a novel target for various cancers and a range of compounds has been reported in this course as potent ChoK inhibitors. However, not much information is known about the binding site of the inhibitors. Therefore, we ventured to unravel the possible binding site of 39 bis-quinolinium inhibitors from which the structural requirement for better protein-ligand complex was delved. Molecular docking and 3D-QSAR studies namely comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on the series. The knowledge of the active site was obtained from the site id search and molcad surface calculations of Sybyl, which was further considered for docking studies. In 3D-QSAR, the best predictions were obtained from the model where 29 compounds were considered in the training set and remaining 10 in the test set. The best CoMFA statistics were obtained with r(2) of 0.99 and q(2) of 0.81 while, CoMSIA was resulted with r(2) of 0.98 and q(2) of 0.77. A comparative analysis was done with the resulted 3D-QSAR maps and the docked poses by overlaying the maps on the active site residues. Since, there is no reported ligand co-crystallized structure of ChoK the present study provides valuable clues on the binding conformation of the ligand and its interactions with the active site.
Collapse
Affiliation(s)
- P Srivani
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | | |
Collapse
|
17
|
Lutz MR, French DC, Rehage P, Becker DP. Isolation of the saddle and crown conformers of cyclotriveratrylene (CTV) oxime. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Milanese L, Espinosa A, Campos JM, Gallo MA, Entrena A. Insight into the inhibition of human choline kinase: homology modeling and molecular dynamics simulations. ChemMedChem 2007; 1:1216-28. [PMID: 17009359 DOI: 10.1002/cmdc.200600158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A homology model of human choline kinase (CK-alpha) based on the X-ray crystallographic structure of C. elegans choline kinase (CKA-2) is presented. Molecular dynamics simulations performed on CK-alpha confirm the quality of the model, and also support the putative ATP and choline binding sites. A good correlation between the MD results and reported CKA-2 mutagenesis assays has been found for the main residues involved in catalytic activity. Preliminary docking studies performed on the CK-alpha model indicate that inhibitors can bind to the binding sites of both substrates (ATP and choline). A possible reason for inhibition of choline kinase by Ca(2+) ion is also proposed.
Collapse
Affiliation(s)
- Lara Milanese
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
19
|
Janardhan S, Srivani P, Sastry G. 2D and 3D Quantitative Structure-Activity Relationship Studies on a Series ofbis-Pyridinium Compounds as Choline Kinase Inhibitors. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200530199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Conejo-García A, Campos J, Eder C, Entrena A, Gallo MA, Espinosa A. Synthesis and NMR Studies on a C3-Symmetrical Triquinolina Triscationic Bicyclophane. J Org Chem 2005; 70:5748-51. [PMID: 15989366 DOI: 10.1021/jo050554q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structure: see text] Two-step syntheses of triple-bridged triscationic bicyclophanes are presented. Molecular modeling has been undertaken by means of ab initio calculations (6-31G level) on the triquinolina triscationic bicyclophane. This compound exists as two diastereomeric sets of enantiomers, one with C3 symmetry and the other with C1 symmetry. The C3-symmetrical derivative is 1.94 kcal mol(-1) more stable than its C1-symmetrical one. This energy difference is sufficient to consider the former and its enantiomer the only two conformations existing in solution at room temperature.
Collapse
Affiliation(s)
- Ana Conejo-García
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Sánchez-Martín R, Campos JM, Conejo-García A, Cruz-López O, Báñez-Coronel M, Rodríguez-González A, Gallo MA, Lacal JC, Espinosa A. Symmetrical Bis-Quinolinium Compounds: New Human Choline Kinase Inhibitors with Antiproliferative Activity against the HT-29 Cell Line. J Med Chem 2005; 48:3354-63. [PMID: 15857141 DOI: 10.1021/jm049061o] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies have been aimed at the establishment of structure-activity relationships that define choline kinase inhibitory and antiproliferative activities of 40 bisquinolinium compounds. These derivatives have electron-releasing groups at position 4 of the quinolinium ring. It is found that the enzymatic inhibition is closely related to the size of the linker, the 3,3'-biphenyl moiety being the most suitable. On the other hand, the antiproliferative activity against the HT-29 cancer cell line is less influenced by the linker type and by substituent R(4). The corresponding QSAR equation was obtained for the whole set of compounds for the antiproliferative activity, the electronic parameter sigma(R) of R(4), the molar refractivity of R(8), and the lipophilic parameters clog P and pi(linker). The most potent antiproliferative agent so far described is 40 for which an IC(50) = 0.45 microM was predicted by the QSAR equation, while its experimental value is IC(50) = 0.20 microM.
Collapse
Affiliation(s)
- Rosario Sánchez-Martín
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, c/ Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanmartín C, Echeverría M, Mendívil B, Cordeu L, Cubedo E, García-Foncillas J, Font M, Palop JA. Synthesis and biological evaluation of new symmetrical derivatives as cytotoxic agents and apoptosis inducers. Bioorg Med Chem 2005; 13:2031-44. [PMID: 15727857 DOI: 10.1016/j.bmc.2005.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 12/23/2004] [Accepted: 01/07/2005] [Indexed: 11/18/2022]
Abstract
Based on the research of less toxic anticancer therapies, we have looked for novel compounds with anticancer activity based on a proapoptotic mechanism. The described compounds are derivatives of ether, carbamate, urea, amide, or amine. Some of the prepared compounds decreased cell viability of various tumor cell lines in a time- and dose-dependent manner, and also induced DNA fragmentation, which indicated cell apoptosis. The potential antitumoral activity of the compounds was evaluated in vitro by examining their cytotoxic effects against human mama, colon, and bladder cancer cell lines (MD-MBA-231, HT-29, and T-24). Compounds showing cytotoxic activity were subjected to an apoptosis assay. In addition, some of the synthesized compounds provoked a rapid and dose-dependent increase in the level of caspase-3, an enzyme, which is considered to be one of the principal executing caspases in which all of the biochemical routes involved in the apoptosis response converge. The most promising compounds, with respect to cytotoxicity and apoptosis induction capability, were the 4-nitrophenylcarbamate derivative of 2,2'-methylenebis(4-chlorophenyl) 3c, the naphthylurea derivative 4d, and the n-propylurea derivative 4c, from 4,4'-methylenebisphenyl, all of which displayed cytotoxic activity and showed very interesting levels of apoptosis. Furthermore, good levels of apoptosis induction were achieved for 3a and 4b in the T-24 cell line. Therefore, compounds such as 7b, a pyrido[2,3-d]pyrimidine derivative, show a significant in vitro cytotoxicity, with IC(50) values between 3 and 8 microm in the three cell lines tested. This compound also produced a rapid and dose-dependent increase of the caspase-3 level and induced apoptosis in HT-29 cells. Other profiles have been found, such as those presented by 5c and 7c, which are cytotoxic and apoptotic but do not provoke an increase in the level of caspase-3, or those presented by 1c, 1d, and 2a, which are cytotoxic, without showing any other activity. The different types of behavior of each compound are not necessarily parallel in the three cell lines tested. A great number of these compounds of interest show no cytotoxicity in nontumoral human cells such as CRL-8799, a nontumoral line of mama. Subsequent modulation of these lead structures permits advances in the design of potent cytotoxic and proapoptotic anticancer drugs.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica, Universidad de Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Conejo-García A, Entrena A, Campos JM, Sánchez-Martín RM, Gallo MA, Espinosa A. Towards a model for the inhibition of choline kinase by a new type of inhibitor. Eur J Med Chem 2005; 40:315-9. [PMID: 15725501 DOI: 10.1016/j.ejmech.2004.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/21/2004] [Accepted: 09/22/2004] [Indexed: 11/28/2022]
Abstract
Bispyridinium cyclophanes are novel templates for human choline kinase inhibitors. Molecular modelling of these compounds suggests three anchorage places at the binding site of the enzyme: (i) two anionic centres of the enzyme active site separated from each other at a distance of approximately 6.2 A that bind the two positively charged nitrogen atoms; (ii) a wide hydrophobic pocket that is fulfilled by the upper linker, the benzene ring that links the two amino groups; and (iii) a smaller hydrophobic pocket that can accommodate the lower benzene ring that links both benzylic carbons. This study may be useful for the development of more potent inhibitors of the enzyme.
Collapse
Affiliation(s)
- Ana Conejo-García
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada 18071, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Conejo-García A, Báñez-Coronel M, Sánchez-Martín RM, Rodríguez-González A, Ramos A, Ramírez de Molina A, Espinosa A, Gallo MA, Campos JM, Lacal JC. Influence of the linker in bispyridium compounds on the inhibition of human choline kinase. J Med Chem 2004; 47:5433-40. [PMID: 15481981 DOI: 10.1021/jm0496537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies have been aimed to establish the structure-activity relationship that define choline kinase (ChoK) inhibitory potency and antiproliferative activity of a set of 25 bispyridinium compounds with electron-releasing groups at position 4. Here we report that, according to their inhibitory activities against human ChoK, the enzymatic inhibitory potency is closely related to the size of the linker, the 3,3'-biphenyl moiety being the most suitable. The N-methylanilino and its derivatives, 4-chloro-N-methylanilino and 3,5-dichloro-N-methylanilino, render higher ChoK inhibitory and antiproliferative activities against the HT-29 human colon cancer cell line.
Collapse
Affiliation(s)
- Ana Conejo-García
- Departamento de Quimica Farmaceutica y Organica, Facultad de Farmacia, Universidad de Grenada, Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Conejo-García A, Campos JM, Entrena A, Sánchez-Martín RM, Gallo MA, Espinosa A. Conformational Dynamics of a Bispyridinium Cyclophane. J Org Chem 2003; 68:8697-9. [PMID: 14575504 DOI: 10.1021/jo0301292] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complete study of the conformational behavior of 4,8-diaza-3(1,4),9(4,1)-dipyridina-1,6(1,4)-dibenzenacyclodecaphan-3(1),9(1)-bis(ilium) bishexafluorophosphate is described. This study allows us to conclude that the process observed by which the different chemical shifts of the pyridinium protons show coalescence at a high-temperature 1H NMR is the rotation around the C-N bond, whereas the conformational equilibrium between the four conformers is produced at low temperature.
Collapse
Affiliation(s)
- Ana Conejo-García
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|