1
|
Rana M, Terpstra K, Gutierrez C, Xu K, Arya H, Bhatt TK, Mirica LM, Sharma AK. Evaluation of Anti-Alzheimer's Potential of Azo-Stilbene-Thioflavin-T derived Multifunctional Molecules: Synthesis, Metal and Aβ Species Binding and Cholinesterase Activity. Chemistry 2025; 31:e202402748. [PMID: 39476334 DOI: 10.1002/chem.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Inhibition of amyloid β (Aβ) aggregation and cholinesterase activity are two major therapeutic targets for Alzheimer's disease (AD). Multifunctional Molecules (MFMs) specifically designed to address other contributing factors, such as metal ion induced abnormalities, oxidative stress, toxic Aβ aggregates etc. are very much required. Several multifunctional molecules have been developed using different molecular scaffolds. Reported herein is a new series of four MFMs based on ThT, Azo-stilbene and metal ion chelating pockets. The synthesis, characterization, and metal chelation ability for [Cu2+ and Zn2+] are presented herein. Furthermore, we explored their multifunctionality w.r.t. to their (i) recognition of Aβ aggregates and monomeric form, (ii) utility in modulating the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) ex-vivo staining of amyloid plaques in 5xFAD mice brain sections, (iv) ability to scavenge free radicals and (v) ability to inhibit cholinesterase activity. Molecular docking studies were also performed with Aβ peptides and acetylcholinesterase enzyme to understand the observed inhibitory effect on activity. Overall, the studies presented here establish the multifunctional nature of these molecules and qualify them as promising candidates for furthermore investigation in the quest for finding Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Tarun K Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Anuj K Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
2
|
Matošević A, Opsenica DM, Bartolić M, Maraković N, Stoilković A, Komatović K, Zandona A, Žunec S, Bosak A. Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer's Disease. Molecules 2024; 29:5357. [PMID: 39598746 PMCID: PMC11596630 DOI: 10.3390/molecules29225357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in the aminoquinoline part of the amodiaquine structure on the inhibition of human acetylcholinesterase and butyrylcholinesterase to investigate the possibility for their use as drugs for the treatment of AD. We synthesized a series of amodiaquine derivatives bearing H-, F-, CF3-, NO2-, CN-, CO2H- or CH3O- groups on the aminoquinoline ring, and determined that all of the tested derivatives were very potent inhibitors of both cholinesterases, with inhibition constants (Ki) in the nM and low μM range and with prominent selectivity (up to 300 times) for the inhibition of acetylcholinesterase. All compounds displayed an ability to chelate biometal ions Fe2+, Zn2+ and Cu2+ and an antioxidant power comparable to that of standard antioxidants. Most of the compounds were estimated to be able to cross the blood-brain barrier by passive transport and were nontoxic toward cells that represent the models of individual organs. Considering all these beneficial features, our study has singled out compound 5, the most potent AChE inhibitor with a CH3O- on C(7) position, followed by 6 and 14, compounds without substituent or hydroxyl groups in the C(17) position, respectively, as the most promising compounds from the series which could be considered as potential multi-target drugs for the treatment of AD.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Dejan M. Opsenica
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
- Centre of Excellence in Environmental Chemistry and Engineering, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Andriana Stoilković
- Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia;
| | - Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10001 Zagreb, Croatia; (A.M.); (M.B.); (N.M.); (A.Z.); (S.Ž.)
| |
Collapse
|
3
|
Dorababu A. Development of diarylpyrimidine derivatives (& other heterocycles) as HIV-1 and WT RT inhibitors. RSC Med Chem 2024:d4md00697f. [PMID: 39659445 PMCID: PMC11626402 DOI: 10.1039/d4md00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Reverse transcriptase (RT) is an enzyme encoded by the genetic material of retroviruses. Viruses such as HIV and hepatitis B employ an enzyme reverse transcriptase (RT) to generate complementary DNA from the RNA template during reverse transcription. Thus, viruses replicate their genomes and proliferate within the host genome. In particular, researchers are concerned about the pathogenic viruses that cause numerous diseases through this mechanism. The retroviruses that cause diseases in humans include human immunodeficiency virus (HIV), which causes AIDS, and human T-cell lymphotropic virus I (HTLV-1), which causes leukemia. HIV has been the most devastating health problem for decades. The number of recorded HIV cases was found to be approximately 39 million worldwide in 2022. Acquired immune deficiency syndrome (AIDS), most devastating disease caused by HIV-1 needs potent antiretroviral therapy for treatment. Among the effective treatments for AIDS, NNRTIs are key drugs in highly active antiretroviral therapy (HAART). Heterocyclic small molecules play an important role in drug discovery for treatment of HIV-1 infection. Particularly, diarylpyrimidines class of drugs have shown promising activity. In this review, anti-HIV-1 activity and RT inhibitory activity of heterocycle small molecules focusing mostly on diarylpyrimidines was discussed. Furthermore, structure-activity relationship was discussed emphasizing most potent molecules.
Collapse
|
4
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
5
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
6
|
Shirisha T, Majhi S, Divakar K, Kashinath D. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition. Org Biomol Chem 2024; 22:790-804. [PMID: 38167698 DOI: 10.1039/d3ob01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Kalivarathan Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur, Tamilnadu-602 117, India.
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
7
|
Osmaniye D, Ahmad I, Sağlık BN, Levent S, Patel HM, Ozkay Y, Kaplancıklı ZA. Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. J Biomol Struct Dyn 2023; 41:9022-9038. [PMID: 36325982 DOI: 10.1080/07391102.2022.2139762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease that is characterized by memory and cognitive impairments that predominantly affects the elderly and is the most common cause of dementia. As is known, the AChE enzyme consists of two parts. In this work, 10 new hydrazones (3a-3j) were designed and synthesized. Naphthalene, indole, benzofuran and benzothiophene rings were used to interact with the PAS region. 4-fluorophenyl and 4-fluorobenzyl structures were preferred for interaction with the CAS region. In biological activity studies, the AChE and BChE inhibitory potentials of all compounds were evaluated using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant activity against AChE. The compounds 3i and 3j displayed IC50 values of 0.034 and 0.027 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also displayed a significant inhibition against AChE. In addition, the antioxidant activities of the compounds were also evaluated. Derivatives 3i and 3j, which emerged active from both in vitro activity studies, were subjected to in vitro PAMPA tests to determine BBB permeability. Further docking simulation also revealed that these compounds (3i, 3j and donepezil) interacted with the enzyme active site in a similar manner to donepezil. A few parameters derived from MD simulation trajectories were computed and validated for the protein-ligand complex's stability under the dynamic conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Harun M Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
8
|
Anwar S, Rehman W, Hussain R, Khan S, Alanazi MM, Alsaif NA, Khan Y, Iqbal S, Naz A, Hashmi MA. Investigation of Novel Benzoxazole-Oxadiazole Derivatives as Effective Anti-Alzheimer's Agents: In Vitro and In Silico Approaches. Pharmaceuticals (Basel) 2023; 16:909. [PMID: 37513821 PMCID: PMC10384982 DOI: 10.3390/ph16070909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological illness that is distinguished clinically by cognitive and memory decline and adversely affects the people of old age. The treatments for this disease gained much attention and have prompted increased interest among researchers in this field. As a springboard to explore new anti-Alzheimer's chemical prototypes, the present study was carried out for the synthesis of benzoxazole-oxadiazole analogues as effective Alzheimer's inhibitors. In this research work, we have focused our efforts to synthesize a series of benzoxazole-oxadiazole (1-19) and evaluating their anti-Alzheimer properties. In addition, the precise structures of synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR and HREI-MS. To find the anti-Alzheimer potentials of the synthesized compounds (1-19), in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), inhibitory activities were performed using Donepezil as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were due to different substitution patterns of substituent(s) at the variable position of both acetophenone aryl and oxadiazole aryl rings. The results of the anti-Alzheimer assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 5.80 ± 2.18 to 40.80 ± 5.90 µM (against AChE) and 7.20 ± 2.30 to 42.60 ± 6.10 µM (against BuChE) as compared to standard Donepezil drug (IC50 = 33.65 ± 3.50 µM (for AChE) and 35.80 ± 4.60 µM (for BuChE), respectively. Specifically, analogues 2, 15 and 16 were identified to be significantly active, even found to be more potent than standard inhibitors with IC50 values of 6.40 ± 1.10, 5.80 ± 2.18 and 6.90 ± 1.20 (against AChE) and 7.50 ± 1.20, 7.20 ± 2.30 and 7.60 ± 2.10 (against BuChE). The results obtained were compared to standard drugs. These findings reveal that benzoxazole-oxadiazole analogues act as AChE and BuChE inhibitors to develop novel therapeutics for treating Alzheimer's disease and can act as lead molecules in drug discovery as potential anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22020, Pakistan
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Shahid Iqbal
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Adeela Naz
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
9
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
10
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
11
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
12
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
13
|
Kılıçaslan D, Kurt AH, Köse M, Çeşme M, Güngör Ö, Oztabag CK, Doganer A. A Novel Donepezil–Caffeic Acid Hybrid: Synthesis, Biological Evaluation, and Molecular Docking Studies. BIOCHEMISTRY (MOSCOW) 2023; 88:50-63. [PMID: 37068881 DOI: 10.1134/s0006297923010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Derya Kılıçaslan
- Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Bolu Abant Izzet Baysal University, Institute of Health Sciences, Bolu, Turkey
| | - Adem Doganer
- Department Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
14
|
Patil VM, Masand N, Gautam V, Kaushik S, Wu D. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:285-319. [DOI: 10.1007/978-981-99-2657-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Sağlık BN, Levent S, Osmaniye D, Evren AE, Karaduman AB, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and In Vitro and In Silico Approaches of Novel Indanone Derivatives as Multifunctional Anti-Alzheimer Agents. ACS OMEGA 2022; 7:47378-47404. [PMID: 36570177 PMCID: PMC9774391 DOI: 10.1021/acsomega.2c06906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a neurological, progressive illness that typically affects the elderly and is clinically distinguished by memory and cognitive decline. Due to a number of factors, including the absence of a radical treatment, an increase in the patient population over time, the high cost of care and treatment, and a significant decline in patients' quality of life, the importance of this disease has increased. These factors have all prompted increased interest among researchers in this field. The chemical structure of the donepezil molecule, the most popular and effective treatment response for AD, served as the basis for the design and synthesis of 42 novel indan-1-one derivatives in this study. Using IR, 1H, and 13C NMR as well as mass spectroscopic techniques, the compounds' structures were identified. Research on the compounds' antioxidant activities, cholinesterase (ChE) enzyme inhibition, monoamine oxidase (MAO) A and B inhibitory activities, β-amyloid plaque inhibition, and cytotoxicity impact was carried out. Inhibition of β-amyloid plaque aggregation; effective inhibition of AChE, BChE, and MAO-B enzymes; and significant antioxidant activity were all demonstrated by compounds D28-D30 and D37-D39. Because of their various actions, it was hypothesized that the related compounds may be useful in treating AD symptoms as well as providing palliative care.
Collapse
Affiliation(s)
- Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Abdullah Burak Karaduman
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
16
|
SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Naik SP, Sachin C, Soniya P, Harishchandra N, Venkatesh S, Shilpa T, Shivlingarao MD. Synthesis, Characterisation and Docking Studies of Thioxoquinoline Derivatives as Potential Anti-Alzheimer Agents. Curr Drug Discov Technol 2022; 19:e130522204744. [PMID: 35570516 DOI: 10.2174/1570163819666220513115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is related to the total loss of presynaptic neurotransmitters of the cholinergic system in regions of the brain related to memory. Approximately 15% of the population beyond the age of 65 years are suffering from dementia due to AD and the rate is rising exponentially with age. OBJECTIVE The objective of this research was the synthesis of a series of 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanoneV (a-c(1-4)) by undergoing acetylation at the nitrogen of 4-hydroxyquinolin-2-(1H)-one and replacing its oxygen atom with sulphur moiety via the process of thionation. To carry out-docking studies of the title compounds were carried out using Molegro Virtual Docker (MVD-2013, 6.0) software and in-vitro screening of anti-alzheimer's activity by Ellman assay method. METHODS The synthesis of the title compounds was carried out via the sequential reaction from the initial dianilide to ring closure to the substituted quinoline-2-ones using polyphosphoric acid as a cyclising agent. These substituted quinoline-2-ones on thionation by phosphorous pentasulphide in aluminium trioxide gave quinoline-2-thiones and on further condensation with chloroacetyl chloride, they resulted in compounds with a leaving group. Nucleophilic substitution reaction of chloroacetylquinoline- 2-thiones with secondary amines resulted in the title compounds 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanone V(a-c(1-4)). The pharmacophore mapping of synthesized compounds was performed by using Molegro Virtual Docker (MVD-2013,6.0). The title compounds were tested for their in vitro anti-Alzheimer's activity using the Ellman assay method. RESULTS All the synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and Mass spectral data. Docking studies of all the synthesized compounds were carried out using a structural mechanism for the inhibition of CDK5-p25 by roscovitine, aloisine, and indirubin (PDB ID: 1UNG), showed favourable results, with compound (Vb3) showing a MolDock score of -85.9788 that was comparable to that of the active ligand (ALH_1288 [B]) with MolDock score of - 87.7609. CONCLUSION The synthesized derivatives possessed the potential to bind with some of the amino acid residues of the active site. Compound 2-(6-chloro-4-hydroxy-2-thioxoquinolin-1(2H)-yl-1-piperazin- 1-ethanone (Vb3) was found to be the most active among the synthesized derivatives, with IC50 values of 32 ± 0.1681. All the synthesized compounds showed potent to moderate activity in comparison to the reference standard donepezil.
Collapse
Affiliation(s)
- Shalaka P Naik
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Chandavarkar Sachin
- Department of Pharmacognosy, ASPM College of Pharmacy, Sangulwadi, Tal. Vaibhavwadi, Dist. Sindhudurg, Maharashtra, 416810, India
| | - Phadte Soniya
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Naik Harishchandra
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Sinari Venkatesh
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Tawde Shilpa
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Mamle Desai Shivlingarao
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| |
Collapse
|
18
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Pharmaceutics 2022; 14:1305. [PMID: 35745878 PMCID: PMC9229919 DOI: 10.3390/pharmaceutics14061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
Collapse
Affiliation(s)
- Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Nataša Terzić-Jovanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Dejan M. Opsenica
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
- Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Dileep KV, Ihara K, Mishima-Tsumagari C, Kukimoto-Niino M, Yonemochi M, Hanada K, Shirouzu M, Zhang KYJ. Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int J Biol Macromol 2022; 210:172-181. [PMID: 35526766 DOI: 10.1016/j.ijbiomac.2022.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the most common, progressive neurodegenerative disorders affecting the aged populations. Though various disease pathologies have been suggested for AD, the impairment of the cholinergic system is one of the critical factors for the disease progression. Restoration of the cholinergic transmission through acetylcholinesterase (AChE) inhibitors is a promising disease modifying therapy. Being the first marketed drug for AD, tacrine reversibly inhibits AChE and thereby slows the breakdown of the chemical messenger acetylcholine (ACh) in the brain. However, the atomic level of interactions of tacrine towards human AChE (hAChE) is unknown for years. Hence, in the current study, we report the X-ray structure of hAChE-tacrine complex at 2.85 Å resolution. The conformational heterogeneity of tacrine within the electron density was addressed with the help of molecular mechanics assisted methods and the low-energy ligand configuration is reported, which provides a mechanistic explanation for the high binding affinity of tacrine towards AChE. Additionally, structural comparison of reported hAChE structures sheds light on the conformational selection and induced fit effects of various active site residues upon binding to different ligands and provides insight for future drug design campaigns against AD where AChE is a drug target.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
21
|
George N, Jawaid Akhtar M, Al Balushi KA, Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents. Bioorg Chem 2022; 127:105941. [PMID: 35714473 DOI: 10.1016/j.bioorg.2022.105941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder that leads to dementia i.e., progressive memory loss accompanied with worsening of thinking ability of an individual. The cause of AD is not fully understood but it progresses with age where brain cells gradually die over time. According to the World Health Organization (WHO), currently 50 million people worldwide are affected by dementia and 60-70% of the cases belong to AD. Cumulative research over the past few decades have shown that molecules that act at a single target possess limited efficacy since these investigational drugs are not able to act against complex pathologies and thus do not provide permanent cure. Designing of multi-target directed ligands (MTDLs) appears to be more beneficial and a rational approach to treat chronic complex diseases including neurodegenerative diseases. Recently, MTDLs are being extensively researched by the medicinal chemists for the development of drugs for the treatment of various multifactorial diseases. Indole is one of the privileged scaffolds which is considered as an essential mediator between the gut-brain axis because of its neuroprotective, anti-inflammatory, β-amyloid anti-aggregation and antioxidant activities. Herein, we have reviewed the potential of some indole-hybrids acting at multiple targets in the pathogenesis of AD. We have reviewed research articles from the year 2014-2021 from various scientific databases and highlighted the synthetic strategies, mechanisms of neuroprotection, toxicity, structure activity relationships and molecular docking studies of various indole-hybrid derivatives. This literature review of published data on indole derivatives indicated that developing indole hybrids have improved the pharmacokinetic profile with lower toxicity, provided synergistic effect, helped to develop more potent compounds and prevented drug-drug interactions. It is evident that this class of compounds have potential to inhibit multiple enzymes targets involved in the pathogenesis of AD and therefore indole hybrids as MTDLs may play an important role in the development of anti-AD molecules.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Md Jawaid Akhtar
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| |
Collapse
|
22
|
Dwomoh L, Tejeda G, Tobin A. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neuronal Signal 2022; 6:NS20210004. [PMID: 35571495 PMCID: PMC9069568 DOI: 10.1042/ns20210004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.
Collapse
Affiliation(s)
- Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo S. Tejeda
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Zeng F, Lu T, Wang J, Nie X, Xiong W, Yin Z, Peng D. Design, Synthesis and Bioactivity Evaluation of Coumarin-BMT Hybrids as New Acetylcholinesterase Inhibitors. Molecules 2022; 27:molecules27072142. [PMID: 35408542 PMCID: PMC9000719 DOI: 10.3390/molecules27072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Coumarin possesses the aromatic group and showed plentiful activities, such as antioxidant, preventing asthma and antisepsis. In addition, coumarin derivatives usually possess good solubility, low cytotoxicity and excellent cell permeability. In our study, we synthesized the compound bridge methylene tacrine (BMT), which has the classical pharmacophore structure of Tacrine (THA). Based on the principle of active substructure splicing, BMT was used as a lead compound and synthesized coumarin-BMT hybrids by introducing coumarin to BMT. In this work, 21 novel hybrids of BMT and coumarin were synthesized and evaluated for their inhibitory activity on AChE. All obtained compounds present preferable inhibition. Compound 8b was the most active compound, with the value of Ki as 49.2 nM, which was higher than Galantamine (GAL) and lower than THA. The result of molecular docking showed that the highest binding free energy was -40.43 kcal/mol for compound 8b, which was an identical trend with the calculated Ki.
Collapse
Affiliation(s)
- Fanxin Zeng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Tao Lu
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
| | - Jie Wang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Xuliang Nie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Wanming Xiong
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Zhongping Yin
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (Z.Y.); (D.P.)
| | - Dayong Peng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
- Correspondence: (Z.Y.); (D.P.)
| |
Collapse
|
24
|
Grishchenko MV, Makhaeva GF, Burgart YV, Rudakova EV, Boltneva NP, Kovaleva NV, Serebryakova OG, Lushchekina SV, Astakhova TY, Zhilina EF, Shchegolkov EV, Richardson RJ, Saloutin VI. Conjugates of Tacrine with Salicylamide as Promising Multitarget Agents for Alzheimer's Disease. ChemMedChem 2022; 17:e202200080. [PMID: 35322571 PMCID: PMC9314152 DOI: 10.1002/cmdc.202200080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 12/29/2022]
Abstract
New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC50 to 0.224 μM) and butyrylcholinesterase (BChE, IC50 to 0.0104 μM) inhibitory activities. They were also rather poor inhibitors of carboxylesterase, suggesting a low tendency to exert potential unwanted drug-drug interactions in clinical use. The conjugates were mixed-type reversible inhibitors of both cholinesterases and demonstrated dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking that, along with experimental results on propidium iodide displacement, suggest their potential to block AChE-induced β-amyloid aggregation. The new conjugates exhibited high ABTS.+ -scavenging activity. N-(6-(1,2,3,4-Tetrahydroacridin-9-ylamino)hexyl)salicylamide is a lead compound that also demonstrates metal chelating ability toward Cu2+ , Fe2+ and Zn2+ . Thus, the new conjugates have displayed the potential to be multifunctional anti-AD agents for further development.
Collapse
Affiliation(s)
- Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Tatiana Y Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| | - Rudy J Richardson
- Departments of Environmental Health Sciences and Neurology, University of Michigan, 48109, Ann Arbor, MI, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, MI, USA
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, 620990, Ekaterinburg, Russia
| |
Collapse
|
25
|
Waly OM, Saad KM, El-Subbagh HI, Bayomi SM, Ghaly MA. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer's agents. Eur J Med Chem 2022; 231:114152. [DOI: 10.1016/j.ejmech.2022.114152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
|
26
|
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233:114242. [DOI: 10.1016/j.ejmech.2022.114242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023]
|
27
|
Novel phenolic Mannich base derivatives: synthesis, bioactivity, molecular docking, and ADME-Tox Studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02331-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Meiss CJ, Bothwell PJ, Webb MI. Ruthenium(II)–arene complexes with chelating quinoline ligands as anti-amyloid agents. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent recognition of the soluble form of the amyloid-beta (Aβ) peptide as a neurotoxic agent in Alzheimer’s disease (AD) has spurred the development of agents to target this species. Because Aβ is known to chelate metal ions in solution, metal-based therapeutics are uniquely suited to exploit this affinity, where coordination to Aβ has been shown to impact the neurotoxicity of the peptide. Ruthenium(II)–arene complexes are unique candidates for evaluation, as one face of the molecule is blocked by the hydrophobic arene ring, while coordination to the Aβ peptide can occur on the other side of the molecule. We have prepared and evaluated two Ru(II)–arene complexes with chelating quinoline-based ligands, Ru1 and Ru2, for their respective anti-amyloid abilities. Although both complexes decreased the aggregation of soluble Aβ, Ru1 displayed promise in disrupting formed aggregates of the peptide. These findings represent an exciting new avenue for therapeutic development in AD, where both sides of the aggregation equilibrium are affected.
Collapse
Affiliation(s)
- Cade J. Meiss
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Paige J. Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Michael I. Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
30
|
Polo-Cuadrado E, Ferrer K, Osorio E, Brito I, Cisterna J, Gutiérrez M. Crystal structure, Hirshfeld surface analysis and DFT studies of N-(4-acetylphenyl)quinoline-3-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
32
|
Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, Salahuddin M, Iqbal N, Khan NU, Shah SAA, Farooq RK, Bahadar A, Wadood A, Khan KM. Synthesis, in vitro antiurease, in vivo antinematodal activity of quinoline analogs and their in-silico study. Bioorg Chem 2021; 115:105199. [PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
Collapse
Affiliation(s)
- Khalid Zaman
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa
| | - Shawkat Hayat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - Naqeeb Ullah Khan
- Department of Biochemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ali Bahadar
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
33
|
Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The State of The Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer's Disease. J Cent Nerv Syst Dis 2021; 13:11795735211029113. [PMID: 34285627 PMCID: PMC8267037 DOI: 10.1177/11795735211029113] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic disabling disease that affects the central nervous system. The main consequences of AD include the decline of cognitive functions and language disorders. One of the causes leading to AD is the decrease of neurotransmitter acetylcholine (ACh) levels in the brain, in part due to a higher activity of acetylcholinesterase (AChE), the enzyme responsible for its degradation. Many acetylcholinesterase inhibitors (AChEIs), both natural and synthetic, have been developed and used through the years to counteract the progression of the disease. The first of such drugs approved for a therapeutic use was tacrine, that binds through a reversible bond to the enzyme. However, tacrine has since been withdrawn because of its adverse effects. Currently, donepezil and galantamine are very promising AChEIs with clinical benefits. Moreover, rivastigmine is considered a pseudo-irreversible compound with anti-AChE action, providing similar effects at the clinical level. The purpose of this review is to provide an overview of what has been published over the last decade on the effectiveness of AChEIs in AD, analysing the most relevant issues under the clinical and methodological profiles and the consequent possible welfare effects for the whole world. Furthermore, novel drugs and possible therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Immacolata Vecchio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | | | - Annamaria Paoletti
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Rosario Marra
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation of the National Research Council, Catanzaro, Italy
| |
Collapse
|
34
|
Qiao Y, Chen Y, Zhang S, Huang Q, Zhang Y, Li G. Six novel complexes based on 5-Acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Rani A, Singh A, Kaur J, Singh G, Bhatti R, Gumede N, Kisten P, Singh P, Sumanjit, Kumar V. 1H-1,2,3-triazole grafted tacrine-chalcone conjugates as potential cholinesterase inhibitors with the evaluation of their behavioral tests and oxidative stress in mice brain cells. Bioorg Chem 2021; 114:105053. [PMID: 34120027 DOI: 10.1016/j.bioorg.2021.105053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
The present paper explicates the synthesis of 1H-1,2,3-triazole tethered tacrine-chalcone conjugates and evaluation of their AChE and BuChE inhibitory activity. In-vitroAChE inhibition assay revealed three compounds, 9h, 9i, and 11f, being more potent than the standard drug tacrine and further evaluated against butyrylcholinesterase. The present study was extended to investigate the anti-amnestic effect of promising compoundson scopolamine-induced behavioral and neurochemical changes in mice. Inclined plane model and Elevated plus-maze model were performed to assess general limb motor activity and anxiety-like behavior, respectively, in mice pre-treated with scopolamine. Oxidative stress parameters reduced glutathione contents (GSH) and lipid peroxidation products (TBARS) in the brain homogenates as estimated using ex-vivo studies. Furthermore, molecular docking studies were performed for the potent compounds to decipher the mechanism of observed activities.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Gurjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Njabulo Gumede
- Department of Chemistry, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, South Africa
| | - Prishani Kisten
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Sumanjit
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
36
|
Fatiha Muhammad E, Kumar A, Wahab HA, Zhang KYJ. Identification of 1,2,4-Triazolylthioethanone Scaffold for the Design of New Acetylcholinesterase Inhibitors. Mol Inform 2021; 40:e2100020. [PMID: 34060234 DOI: 10.1002/minf.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors are the most effective drugs for Alzheimer's disease treatment. However, considering the potential and failure rates of AChE inhibitors, chemical scaffolds targeting cholinesterase specifically are still very limited. Herein, we report a new class of AChE inhibitors identified by employing a virtual screening approach that combines shape similarity with molecular docking calculations. Virtual screening followed by the evaluation of AChE inhibitory activity allowed us to identify 1,2,4-triazolylthioethanones as a novel class of AChE inhibitors. Thirteen compounds with 1,2,4-triazolylthiothanone core and IC50 values in the range of 0.15±0.07 to 3.32±0.92 μM have been reported here. Our findings shed light into a class of AChE inhibitors that could be useful starting point for the development of novel therapeutics to tackle Alzheimer's disease.
Collapse
Affiliation(s)
- Erma Fatiha Muhammad
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
37
|
Rampa A, Gobbi S, Belluti F, Bisi A. Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr Med Chem 2021; 28:2305-2327. [PMID: 32867634 DOI: 10.2174/0929867327666200831140745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The unmet need for the development of effective drugs to treat Alzheimer 's disease has been steadily growing, representing a major challenge in drug discovery. In this context, drug repurposing, namely the identification of novel therapeutic indications for approved or investigational compounds, can be seen as an attractive attempt to obtain new medications reducing both the time and the economic burden usually required for research and development programs. In the last years, several classes of drugs have evidenced promising beneficial effects in neurodegenerative diseases, and for some of them, preliminary clinical trials have been started. This review aims to illustrate some of the most recent examples of drugs reprofiled for Alzheimer's disease, considering not only the finding of new uses for existing drugs but also the new hypotheses on disease pathogenesis that could promote previously unconsidered therapeutic regimens. Moreover, some examples of structural modifications performed on existing drugs in order to obtain multifunctional compounds will also be described.
Collapse
Affiliation(s)
- Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
38
|
Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J, Qin S, Li X, Allen S, Bai R, Gong Q, Zhang H, Zhu Z, Xu J. Discovery of Novel Tacrine-Pyrimidone Hybrids as Potent Dual AChE/GSK-3 Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem 2021; 64:7483-7506. [PMID: 34024109 DOI: 10.1021/acs.jmedchem.1c00160] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on a multitarget strategy, a series of novel tacrine-pyrimidone hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation results demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and glycogen synthase kinase 3 (GSK-3). The optimal compound 27g possessed excellent dual AChE/GSK-3 inhibition both in terms of potency and equilibrium (AChE: IC50 = 51.1 nM; GSK-3β: IC50 = 89.3 nM) and displayed significant amelioration on cognitive deficits in scopolamine-induced amnesia mice and efficient reduction against phosphorylation of tau protein on Ser-199 and Ser-396 sites in glyceraldehyde (GA)-stimulated differentiated SH-SY5Y cells. Furthermore, compound 27g exhibited eligible pharmacokinetic properties, good kinase selectivity, and moderate neuroprotection against GA-induced reduction in cell viability and neurite damage in SH-SY5Y-derived neurons. The multifunctional profiles of compound 27g suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Giuseppe Uras
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Yin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shuai Qin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xinuo Li
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Stephanie Allen
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
39
|
Neuroprotective effect of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline mediated via regulation of antioxidant system and inhibition of inflammation and apoptosis in a rat model of cerebral ischemia/reperfusion. Biochimie 2021; 186:130-146. [PMID: 33964368 DOI: 10.1016/j.biochi.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
The aim of the study was the assessment of the neuroprotective potential of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (DHQ) and its effect on inflammation, apoptosis, and transcriptional regulation of the antioxidant system in cerebral ischemia/reperfusion (CIR) in rats. The CIR rat model was constructed using the bilateral common carotid artery occlusion followed by reoxygenation. DHQ was administered at a dose of 50 mg/kg for three days. Histological staining was performed using hematoxylin and eosin. The level of S100B protein, 8-hydroxy-2-deoxyguanosine, and 8-isoprostane was assessed using an enzyme immunoassay. The intensity of apoptosis was assessed based on the activity of caspases and DNA fragmentation. The activity of enzymes was measured spectrophotometrically, the level of gene transcripts was assessed by real-time PCR. DHQ reduced the histopathological changes and normalized levels of S100B, lactate, pyruvate, and HIF-1 mRNA in the CIR rat model. In addition, DHQ decreased the oxidative stress markers in animals with a pathology. The tested compound also inhibited inflammation by decreasing the activity of myeloperoxidase, expression of interleukins and Nfkb2. DHQ-treated rats with CIR showed decreased caspase activity, DNA fragmentation, and AIF expression. DHQ changed activity of antioxidant enzymes to the control values, decreased the expression of Cat, Gsr, and Nfe2l2, which was overexpressed in CIR, and activated the expression of Sod1, Gpx1, Gsta2, and Foxo1. DHQ showed a neuroprotective effect on CIR in rats. The neuroprotective effect involve mechanisms such as the inhibition of oxidative stress, leading to a reduction in the inflammatory response and apoptosis and the modulation of the antioxidant defense components.
Collapse
|
40
|
Room Temperature Syntheses, Crystal Structures and Magnetic Properties of One Novel Decanuclear Copper Cluster Based on 3-amino-1,2,4 triazole Schiff Base. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Wan LX, Zhen YQ, He ZX, Zhang Y, Zhang L, Li X, Gao F, Zhou XL. Late-Stage Modification of Medicine: Pd-Catalyzed Direct Synthesis and Biological Evaluation of N-Aryltacrine Derivatives. ACS OMEGA 2021; 6:9960-9972. [PMID: 33869976 PMCID: PMC8047743 DOI: 10.1021/acsomega.1c01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 05/13/2023]
Abstract
A new series of N-aryltacrine derivatives were designed and synthesized as cholinesterase inhibitors by the late-stage modification of tacrine, using the palladium-catalyzed Buchwald-Hartwig cross-coupling reaction. In vitro inhibition assay against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) demonstrated that most of the synthesized compounds had potent AChE inhibitory activity with negative inhibition of BuChE. Among them, N-(4-(trifluoromethyl)phenyl)-tacrine (3g) and N-(4-methoxypyridin-2-yl)-tacrine (3o) showed the most potent activity against AChE (IC50 values of 1.77 and 1.48 μM, respectively). The anti-AChE activity of 3g and 3o was 3.5 times more than that of tacrine (IC50 value of 5.16 μM). Compound 3o also displayed anti-BuChE activity with an IC50 value of 19.00 μM. Cell-based assays against HepG2 and SH-SY5Y cell lines revealed that 3o had significantly lower hepatotoxicity compared to tacrine, with additional neuroprotective activity against H2O2-induced damage in SH-SY5Y cells. The advantages including synthetic accessibility, high potency, low toxicity, and adjunctive neuroprotective activity make compound 3o a new promising multifunctional candidate for the treatment of Alzheimer's disease.
Collapse
|
42
|
Pavlidis N, Kofinas A, Papanikolaou MG, Miras HN, Drouza C, Kalampounias AG, Kabanos TA, Konstandi M, Leondaritis G. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer's disease. J Inorg Biochem 2021; 217:111393. [PMID: 33610031 DOI: 10.1016/j.jinorgbio.2021.111393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The main pathophysiological mechanisms involve cholinergic neurotransmission, beta-amyloid (Αβ) and Tau proteins, several metal ions and oxidative stress, among others. Current drugs offer only relief of symptoms and not a cure of AD. Accumulating evidence suggests that multifunctional compounds, targeting multiple pathophysiological mechanisms, may have a great potential for the treatment of AD. In this study, we report on the synthesis and physicochemical characterization of four quinoline-based metal chelators and their respective copper(II) complexes. Most compounds were non-toxic at concentrations ≤5 μM. In neuroprotection studies employing undifferentiated and differentiated SH-SY5Y cells, the metal chelator N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2dqpyca) appeared to exert significant neuroprotection against both, Aβ peptide- and H2O2-induced toxicities. The copper(II) complex [CuII(H2bqch)Cl2].3H2O (H2bqch = N,N'-Bis(8-quinolyl)cyclohexane-1,2-diamine) also protected against H2O2-induced toxicity, with a half-maximal effective concentration of 80 nM. Molecular docking simulations, using the crystal structure of the acetylcholinesterase (AChE)-rivastigmine complex as a template, indicated a strong interaction of the metal chelator H2dqpyca, followed by H2bqch, with both the peripheral anionic site and the catalytic active site of AChE. In conclusion, the sufficient neuroprotection provided by the metal chelator H2dqpyca and the copper(II) complex [CuII(H2bqch)Cl2].3H2O along with the evidence for interaction between H2dqpyca and AChE, indicate that these compounds have the potential and should be further investigated in the framework of preclinical studies employing animal models of AD as candidate multifunctional lead compounds for the treatment of the disease.
Collapse
Affiliation(s)
- Nikolaos Pavlidis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece; Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Michael G Papanikolaou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Haralampos N Miras
- West CHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Chryssoula Drouza
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| | - Angelos G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
43
|
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the prevalence of this currently untreatable disease is expected to rise in step with increased global life expectancy. AD is a multifaceted disorder commonly characterized by extracellular amyloid–beta (Aβ) aggregates, oxidative stress, metal ion dysregulation, and intracellular neurofibrillary tangles. This review will focus on medicinal inorganic chemistry strategies to target AD, with a focus on the Aβ peptide and its relation to metal ion dysregulation and oxidative stress. Multifunctional compounds designed to target multiple disease processes have emerged as promising therapeutic options, and recent reports detailing multifunctional metal-binding compounds, as well as discrete metal complexes, will be discussed.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
44
|
Abstract
Visible light promoted synthetic routes of quinolines using different strategies are hereby documented.
Collapse
Affiliation(s)
- Ajay Kumar Dhiya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Aparna Monga
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
45
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
46
|
Bowroju SK, Mainali N, Ayyadevara S, Penthala NR, Krishnamachari S, Kakraba S, Reis RJS, Crooks PA. Design and Synthesis of Novel Hybrid 8-Hydroxy Quinoline-Indole Derivatives as Inhibitors of Aβ Self-Aggregation and Metal Chelation-Induced Aβ Aggregation. Molecules 2020; 25:E3610. [PMID: 32784464 PMCID: PMC7463714 DOI: 10.3390/molecules25163610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
A series of novel hybrid 8-hydroxyquinoline-indole derivatives (7a-7e, 12a-12b and 18a-18h) were synthesized and screened for inhibitory activity against self-induced and metal-ion induced Aβ1-42 aggregation as potential treatments for Alzheimer's disease (AD). In vitro studies identified the most inhibitory compounds against self-induced Aβ1-42 aggregation as 18c, 18d and 18f (EC50 = 1.72, 1.48 and 1.08 µM, respectively) compared to the known anti-amyloid drug, clioquinol (1, EC50 = 9.95 µM). The fluorescence of thioflavin T-stained amyloid formed by Aβ1-42 aggregation in the presence of Cu2+ or Zn2+ ions was also dramatically decreased by treatment with 18c, 18d and 18f. The most potent hybrid compound 18f afforded 82.3% and 88.3% inhibition, respectively, against Cu2+- induced and Zn2+- induced Aβ1-42 aggregation. Compounds 18c, 18d and 18f were shown to be effective in reducing protein aggregation in HEK-tau and SY5Y-APPSw cells. Molecular docking studies with the most active compounds performed against Aβ1-42 peptide indicated that the potent inhibitory activity of 18d and 18f were predicted to be due to hydrogen bonding interactions, π-π stacking interactions and π-cation interactions with Aβ1-42, which may inhibit both self-aggregation as well as metal ion binding to Aβ1-42 to favor the inhibition of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Suresh K. Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| | - Sesha Krishnamachari
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
| | - Samuel Kakraba
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
| | - Robert J. Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
- Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| |
Collapse
|
47
|
Zawada K, Czarnecka K, Girek M, Kręcisz P, Trejtnar F, Mandíková J, Jończyk J, Bajda M, Staśkiewicz M, Wójtowicz P, Dziubek K, Skibiński R, Szymański P. New hybrids of tacrine and indomethacin as multifunctional acetylcholinesterase inhibitors. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01295-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractA new series of hybrid compounds were designed, consisting of anti-AChE and BuChE activity components with an anti-inflammatory component. A series of 9-amino-1,2,3,4-tetrahydroacridine and indomethacin derivatives were synthesized. All compounds were created using alkyldiamine with different chain lengths as a linker. Various biological activities were evaluated, including inhibitory activity against AChE and BuChE. The tested compounds showed high inhibitory activities against cholinesterases. The IC50 values for all compounds ranging from 10 nM to 7 µM. The potency of inhibition was much higher than well-known AChE and BuChE inhibitors (tacrine and donepezil). Compound 3h had the strongest inhibitory activity; kinetic studies showed it to have a mixed-type of acetylcholinesterase inhibition properties. The cytotoxicity of the newly-synthesized compounds against HepG2 (hepatocarcinoma cells) and EA.hy96 (human vein endothelial cells) cell lines was determined using the MTT and MTS tests. All investigated compounds presented similar cytotoxic activity against HepG2 and EA.hy926 cell line, ranged in micromolar values. Compounds with longer linkers showed higher antioxidant activity. The most active compound was 3h. Docking studies confirmed interactions with important regions of AChE and BuChE. Its multifunctional properties, i.e. high activity against AChE and BuChE, antioxidant activity and low cytotoxicity, highlight 3h as a promising agent for the treatment of AD.
Collapse
|
48
|
Marinescu M, Cinteză LO, Marton GI, Chifiriuc MC, Popa M, Stănculescu I, Zălaru CM, Stavarache CE. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem 2020; 14:45. [PMID: 32724899 PMCID: PMC7382033 DOI: 10.1186/s13065-020-00697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO-LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO-LUMO orbitals is responsible for the best biological activities of the compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Ludmila Otilia Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - George Iuliu Marton
- Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ioana Stănculescu
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - Christina-Marie Zălaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Cristina-Elena Stavarache
- Institute of Organic Chemistry "C.D. Nenitzescu" of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| |
Collapse
|
49
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
50
|
Saeedi M, Safavi M, Allahabadi E, Rastegari A, Hariri R, Jafari S, Bukhari SNA, Mirfazli SS, Firuzi O, Edraki N, Mahdavi M, Akbarzadeh T. Thieno[2,3-b]pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease. Arch Pharm (Weinheim) 2020; 353:e2000101. [PMID: 32657467 DOI: 10.1002/ardp.202000101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022]
Abstract
In search of safer tacrine analogs, various thieno[2,3-b]pyridine amine derivatives were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs). Among the synthesized compounds, compounds 5e and 5d showed the highest activity towards acetylcholinesterase and butyrylcholinesterase, with IC50 values of 1.55 and 0.23 µM, respectively. The most active ChE inhibitors (5e and 5d) were also candidates for further complementary assays, such as kinetic and molecular docking studies as well as studies on inhibitory activity towards amyloid-beta (βA) aggregation and β-secretase 1, neuroprotectivity, and cytotoxicity against HepG2 cells. Our results indicated efficient anti-Alzheimer's activity of the synthesized compounds.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Emad Allahabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafari
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Saudi Arabia
| | - Seyedeh S Mirfazli
- Department of Medicinal Chemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|