1
|
Zou DJ, Liu RZ, Lv YJ, Guo JN, Fan ML, Zhang CJ, Xie YY. Chromone-deferiprone hybrids as novel MAO-B inhibitors and iron chelators for the treatment of Alzheimer's disease. Org Biomol Chem 2024. [PMID: 39027944 DOI: 10.1039/d4ob00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 μM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.
Collapse
Affiliation(s)
- Da-Jiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 50025, China
| | - Ren-Zheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yang-Jing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Jia-Nan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Miao-Liang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Chang-Jun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuan-Yuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
3
|
Pu MX, Guo HY, Quan ZS, Li X, Shen QK. Application of the Mannich reaction in the structural modification of natural products. J Enzyme Inhib Med Chem 2023; 38:2235095. [PMID: 37449337 DOI: 10.1080/14756366.2023.2235095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The Mannich reaction is commonly used to introduce N atoms into compound molecules and is thus widely applied in drug synthesis. The Mannich reaction accounts for a certain proportion of structural modifications of natural products. The introduction of Mannich bases can significantly improve the activity, hydrophilicity, and medicinal properties of compounds; therefore, the Mannich reaction is widely used for the structural modification of natural products. In this paper, the application of the Mannich reaction to the structural modification of natural products is reviewed, providing a method for the structural modification of natural products.
Collapse
Affiliation(s)
- Miao-Xia Pu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
5
|
Li G, Feng X, Wang W, Li J, Shi Y, Wang L, Hu C. Synthesis and biological evaluation of chromanone-based derivatives as potential anti-neuroinflammatory agents. Bioorg Chem 2023; 139:106767. [PMID: 37552914 DOI: 10.1016/j.bioorg.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
As a privileged scaffold, chromanone has been extensively introduced in the design of drug leads with diverse pharmacological features, particularly in the area of inflammatory diseases. Herein, the preparation of chromanone-based derivatives (4a-4i) was smoothly achieved, and their structures were characterized using 1H NMR, 13C NMR, and ESI-HRMS spectroscopy techniques. Out of them, analogue 4e exhibited the most potent inhibitory capacity against the NO release and iNOS expression, without apparent cytotoxicity. Our observations showed that 4e could dramatically prevent the translocation of NF-κB from the cytoplasm to nucleus, and decrease the production of proinflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced BV-2 cells. Mechanistically, 4e significantly deactivated NF-κB by disturbing TLR4-mediated TAK1/NF-κB and PI3K/Akt signaling cascades. Consistent with the in vitro study, 4e could effectively mitigate the inflammation response of hippocampal tissue in LPS-induced mouse model by inhibiting microglial activation. Collectively, these results revealed 4e as a prospective neuroprotective candidate for the therapy of neuroinflammation-related disorders.
Collapse
Affiliation(s)
- Guoxun Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaoqing Feng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenqian Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jian Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China; Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yeye Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lin Wang
- College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Caijuan Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
6
|
Saif A, Al Shahrani M, Alshehri M, Abohassan M, Alshehri MA, Radhakrishnan S, Rajagopalan P. Computational analysis and in vitro evaluation of TMF 104, for its antioxidant, antimicrobial, and anticancer efficacies. Biotechnol Appl Biochem 2023; 70:148-156. [PMID: 35324037 DOI: 10.1002/bab.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 11/06/2022]
Abstract
Benzylidene chromanones are small molecules, structurally similar to active phytochemicals. Herein, we report one novel benzylidene chromanone, TMF 104, for its bio-efficacies. Its computational docking for Vanin-1, antioxidant, free radical scavenging capacities, antimicrobial effects, and anticancer efficacy were analyzed. TMF 104 predicated strong binging to Vanin-1 protein with a docking energy of -8.1 kcal/mol. The compound dose-dependently exhibited free-radical scavenging and antioxidant activities when tested in vitro. The compound also had remarkable activity against Salmonella typhimurium, Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli with minimum inhibitory concentration values of 1.5, 2.0, 12.5, and 13.5 μg/ml, respectively. The compound was also effective against Bacillus cereus and Pseudomonas aeruginosa albeit at higher concentrations. TMF 104 dose-dependently inhibited the proliferation of MCF-7, NCI H460, and Caki-1 cells with respective GI50 values of 24.51, 21.95, and 32.95 μg/ml, whereas the compound was toxic to normal Vero cells at much higher concentration of 264.70 μg/ml. The compound also aided in apoptosis and increased the sub G0 /G1 phase of the cell cycle in all three cancer cells tested. Our study identified a novel, potent benzylidene analogue with potent antioxidant, antimicrobial, and anticancer activities, which drives further attention for further research.
Collapse
Affiliation(s)
- Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Alshehri
- Department of Biology, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Suresh Radhakrishnan
- Post Graduate and Research Department of Chemistry, Presidency College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Hitting drug-resistant malaria infection with triazole-linked flavonoid-chloroquine hybrid compounds. Future Med Chem 2022; 14:1865-1880. [PMID: 36622669 DOI: 10.4155/fmc-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Malaria represents the major parasitic disease in tropical regions, and the development of new potent drugs is of pivotal importance. In this study, a series of hybrid molecules were designed by linking the 7-chloroquinoline core of chloroquine to different fluorinated flavonoid-related scaffolds. Materials & methods: Compounds were prepared by exploiting the click chemistry approach, allowing the introduction of a 1,2,3-triazole, a privileged structural motif in antiparasitic dug discovery. Results: Compounds 1b and 1c were the most interesting and were endowed with the highest in vitro activity, mainly against a resistant Plasmodium falciparum strain. They also inhibited hemozoin formation, and 1c was more effective than chloroquine against stage V gametocytes. Conclusion: The homoisoflavone core is a new, promising antimalarial scaffold that deserves further investigation.
Collapse
|
8
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
9
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Escobar-Ramos A, Gómez-Rivera A, Lobato-García CE, Zamilpa A, Ble-González EA, González-Cortazar M, Gallegos-García AJ, Herrera-Ruiz M. Anxiolytic effect of the heartwood of Haematoxylum campechianum L. and sappanchalcone in an in vivo model in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114764. [PMID: 34687835 DOI: 10.1016/j.jep.2021.114764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haematoxylum campechianum L., is a well-known plant in the southeast region of Mexico, where it is named as "palo tinto" or "palo de Campeche", in English there are vernacular names such as "redwood", "bloodwood tree" or "campeachy wood". Traditional medicine refers its use for the treatment of different disorders including depression. AIM OF THE STUDY Considering the traditional use of this plant for the alleviation of depression, the aim of this study was the evaluation of the anxiolytic effect of the methanolic and hydroalcoholic extracts from the heartwood of Haematoxylum campechianum L., and the sappanchalchone (Sapp). Additionally, it is presented the characterization of the new compound 4-hydroxyhematoxylol (2) isolated from the hydroalcoholic extract. MATERIAL AND METHODS The anxiolytic effect of the extracts and Sapp was evaluated by using the Elevated Plus Maze (EPM) additionally the sedative effect was assessed with the Open Field Test (OFT). The chemical characterization of Sapp and 2 was performing by 1D and 2D NMR experiments. RESULTS The EPM test showed that the administration of the plant extracts increased the percentage of time spent in open arms (76.32 ± 6.35 and 66.68 ± 20.64%, respectively for the methanolic and hydroalcoholic extracts), whereas the administration of Sapp increased the percentage of time spent in open arms by 60.07 ± 14.28%, these results are similar to Diazepam (DZP, positive control) which caused an increment of 74.06 ± 23.42%. For the OFT, all of the doses evaluated for both extracts and Sapp diminished the number of rearing (R) and total corssing (TC) behavior in a similar way to the positive control (DZO) and statistically different with respect to the vehicle. CONCLUSION The results obtained showed that the polar extracts from the heartwood of Haematoxylum campechianum L. possess both anxiolytic and sedative effect and that the chalcone-type compound Sapp, isolated from the methanolic extract, is partially responsible of these activities.
Collapse
Affiliation(s)
- Armando Escobar-Ramos
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Abraham Gómez-Rivera
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico.
| | - Carlos Ernesto Lobato-García
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico
| | - Ever A Ble-González
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico
| | - Ammy Joana Gallegos-García
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco, 86690, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur- Instituto Mexicano del Seguro Social (IMSS), Argentina No 1, Col. Centro, 62790, Xochitepec Morelos, Mexico.
| |
Collapse
|
11
|
Zaman GS, Kamli H, Radhakrishnan S, Ahmad I, Otifi H, Alshahrani MY, Rajagopalan P. Structure activity evaluation and computational analysis identify potent, novel 3-benzylidene chroman-4-one analogs with anti-fungal, anti-oxidant, and anti-cancer activities. Drug Dev Ind Pharm 2021; 47:1459-1468. [PMID: 34726982 DOI: 10.1080/03639045.2021.2001489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SIGNIFICANCE 3-Benzylidene chroman-4-ones share close homology with naturally occurring bioactive compounds. OBJECTIVES This study evaluated the antifungal, antioxidant, and anticancer activities of novel 3-benzylidene chromanone analogs with respect to their structure-activity relationships. METHODS Compounds 45e-64e were synthesized inhouse. Aspergillus niger (MTCC 1344) Aspergillus flavus and Botrytis cinerea were the fungal strains tested. Computational docking analysis was carried out for vanin-1, estrogen receptor (ER), and Akt proteins using Auto-dock vina. Free radical scavenging and total antioxidant capacity was analyzed using spectrophotometric methods. MCF-7 (breast cancer) cell line was used for anticancer assays. Flow cytometry was used to detect cell cycle and apoptosis. RESULTS Out of the twenty compounds screened, compounds 47e, 50e, 52e, 57e, and 61e that possessed either methoxy and ethoxy/methyl/isopropyl group exhibited very good activity against all fungi. Compounds possessing methoxy group alone showed moderate activity and compounds devoid of methoxy, and ethoxy groups did not show any activity. When computationally analyzed against target proteins for antioxidant properties, the compounds exhibited excellent binging efficacy to vanin-1 and ERs. These predictions were translated in the in vitro free-radical scavenging and antioxidant assays. The compounds exhibited anti-proliferative efficacy in breast cancer cell line, increased the sub-G0/G1 cell cycle populations and total apoptosis in MCF-7 cells. Additionally, the compounds also depicted excelling binging energy when computationally analyzed for Akt enzyme binding. CONCLUSION In summary, our study identified potential analogs of 3-benzylidene chroman-4-one molecules with excellent anti-fungal, anti-oxidant, and anticancer activities which demand further research for drug developments.
Collapse
Affiliation(s)
- Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Post Graduate and Research Department of Chemistry, Presidency College, Chennai, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
13
|
Li J, Yang F, Zeng LW, Zhang FM, Zhou CX, Gan LS. An Efficient Regioselective Synthesis of 8-Formylhomoisoflavonoids with Neuroprotective Activity by Enhancing Autophagy. JOURNAL OF NATURAL PRODUCTS 2021; 84:1385-1391. [PMID: 33724036 DOI: 10.1021/acs.jnatprod.0c00830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
6-Formylisoophiopogonone B (7a) and 8-formylophiopogonone B (7b), two natural products isolated from Ophiopogon japonicus, represent a subgroup of rare 6/8-formyl/methyl-homoisoflavonoid skeletons. Herein we report an efficient method for the synthesis of these formyl/methyl-homoisoflavonoids. The synthesized compounds were evaluated for their neuroprotective effects on the MPP+-induced SH-SY5Y cell injury model and showed marked activity. Exploration of the neuroprotective mechanisms of compound 7b led to an increased expression of autophagy marker LC3-II and down-regulation of autophagy substrate p62/SQSTM1. Molecular docking studies showed that 7b may prevent the inhibition of the classic PI3K-AKT-mTOR signaling pathway by interfering with the human HSP90AA1.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, People's Republic of China
| | - Fan Yang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, People's Republic of China
| | - Lin-Wei Zeng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Fang-Min Zhang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbin Avenue, Jiangmen 529020, People's Republic of China
| | - Chang-Xin Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbin Avenue, Jiangmen 529020, People's Republic of China
| |
Collapse
|
14
|
Ye C, Xu R, Cao Z, Song Q, Yu G, Shi Y, Liu Z, Liu X, Deng Y. Design, synthesis, and in vitro evaluation of 4-aminoalkyl-1(2H)-phthalazinones as potential multifunctional anti-Alzheimer's disease agents. Bioorg Chem 2021; 111:104895. [PMID: 33887586 DOI: 10.1016/j.bioorg.2021.104895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023]
Abstract
A series of 4-aminoalkyl-1(2H)-phthalazinone derivatives was designed and synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. In vitro biological assay results demonstrated that most synthesized compounds exhibited significant AChE inhibition, moderate to high MAOs inhibitory potencies and good anti-platelet aggregation abilities. Among them, compound 15b exhibited the highest inhibitory potencies towards MAO-B and MAO-A (IC50 = 0.7 µM and 6.4 µM respectively), moderate inhibition towards AChE (IC50 = 8.2 µM), and good activities against self- and Cu2+-induced Aβ1-42 aggregation and platelet aggregation. Moreover, 15b also displayed antioxidant capacity, neuroprotective potency, anti-neuroinflammation and BBB permeability. These excellent results indicated that compound 15b could be worthy of further studies to be considered as a promising multifunctional candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Xu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuoling Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Sepay N, Sepay N, Al Hoque A, Mondal R, Halder UC, Muddassir M. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Struct Chem 2020; 31:1831-1840. [PMID: 32412544 PMCID: PMC7220622 DOI: 10.1007/s11224-020-01537-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 01/10/2023]
Abstract
Novel coronavirus, 2019-nCoV is a danger to the world and is spreading rapidly. Very little structural information about 2019-nCoV make this situation more difficult for drug designing. Benzylidenechromanones, naturally occurring oxygen heterocyclic compounds, having capability to inhibit various protein and receptors, have been designed here to block mutant variety of coronavirus main protease enzyme (SARC-CoV-2 Mpro) isolated from 2019-nCoV with the assistance of molecular docking, bioinformatics and molecular electrostatic potential. (Z)-3-(4'-chlorobenzylidene)-thiochroman-4-one showed highest binding affinity to the protein. Binding of a compound to this protein actually inhibits the replication and transcription of the virus and, ultimately, stop the virus multiplication. Incorporation of any functional groups to the basic benzylidenechromanones enhances their binding ability. Chloro and bromo substitutions amplify the binding affinity. ADME studies of all these compounds indicate they are lipophilic, high gastro intestine absorbable and blood-brain barrier permeable. The outcome reveals that the investigated benzylidenechromanones can be examined in the case of 2019-nCoV as potent inhibitory drug of SARC-CoV-2 Mpro, for their strong inhibition ability, high reactivity and effective pharmacological properties.
Collapse
Affiliation(s)
- Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, 700032 India
| | - Nadir Sepay
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Rina Mondal
- Department of Chemistry, Uluberia College, Howrah, West Bengal 711 315 India
| | | | - Mohd. Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
16
|
Li W, Yang X, Song Q, Cao Z, Shi Y, Deng Y, Zhang L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg Chem 2020; 97:103707. [DOI: 10.1016/j.bioorg.2020.103707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
|
17
|
Li Y, Tang B, Dong S, Gao W, Jiang W, Chen Y. Solvent‐Free Synthesis and In Vitro Antitumor Activity of a New Class of (
Z
)‐3‐Arylidene‐1
H
‐pyrano[3,4‐
b
]quinolin‐4(3
H
)‐ones. ChemistrySelect 2020. [DOI: 10.1002/slct.201904434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Li
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Bingyue Tang
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Shiyu Dong
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Wentao Gao
- Institute of Superfine ChemicalsBohai University, 19 Keji Rd. Jinzhou City 121000 P.R. China
| | - Wenting Jiang
- College of Life ScienceYan'an University, 580 Shengdi Rd. Yan'an City 716000 P. R. China
| | - Yu Chen
- School of Life Science and BiopharmaceuticsShenyang Pharmaceutical University, 103 Wenhua Rd. Shenyang City 110866 P. R. China
| |
Collapse
|
18
|
Yang F, He WP, Yao JQ, Zou D, Chen P, Li J. Synthesis and Neuroprotective Biological Evaluation of Quinazolinone Derivatives via Scaffold Hopping. Curr Org Synth 2019; 16:772-775. [DOI: 10.2174/1570179416666190328233501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Objective:
To develop efficient method for the synthesis of quinazolinone derivatives bearing
different functional groups on ring A and ring B and evaluation as neuroprotective agents.
Methods:
Synthetic route to quinazolinone derivatives was furnished by condensation/cyclocondensation/
reduction sequence of the activated N-acylbenzotriazoles. The structures of the targets compounds
have been deduced upon their spectral data (1HNMR, 13CNMR and Mass spectroscopy). The
neuroprotective activities of the synthesized compounds are also evaluated.
Results:
Preliminary screening on a MPP+ induced SH-SY5Y cell injury model of the synthesized compounds
resulted in four compounds (6q, 6r, 6u, and 8e) showed promising neural cell protection activities. The action
mechanisms of these compounds on neuroprotection were then analyzed by docking and reverse docking
modeling.
Conclusion:
A series of quinazolinone derivatives, including different substitution types on rings A and B
were designed and synthesized via scaffold hopping. With the help of neuroprotective biological evaluation,
several efficient therapeutic neuroprotective agents were found for further evaluation as drug candidate against
neurodegenerative disorder.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Wei-Ping He
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Jia-Qi Yao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Dong Zou
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Pu Chen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, Zhejiang, China
| |
Collapse
|
19
|
Liang YE, Lu CL, Li WT. Pd-Catalyzed sequential hydroarylation and olefination reactions of 3-allylchromones. Org Biomol Chem 2019; 17:7569-7583. [PMID: 31384851 DOI: 10.1039/c9ob01147a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a novel approach to regioselective α- or γ-hydroarylation of 3-allylchromones with electron-rich arenes has been presented. Results of this study indicated that the regioselectivity was dependent on the substituent at the γ-position of the allyl group. Hydrogen or alkyl substitution favored α-hydroarylation, whereas aryl substitution favored γ-hydroarylation. This methodology provides an efficient means to achieve the α- or γ-selective hydroarylation of 3-allylchromones. Application of α-hydroarylation to perform Pd-catalyzed one-pot sequential α-hydroarylation and π-chelation-assisted olefination has also been reported.
Collapse
Affiliation(s)
- Yi-En Liang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China.
| | - Chia-Ling Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China.
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, Republic of China.
| |
Collapse
|
20
|
Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 2019; 176:228-247. [DOI: 10.1016/j.ejmech.2019.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
21
|
Zhang X, Song Q, Cao Z, Li Y, Tian C, Yang Z, Zhang H, Deng Y. Design, synthesis and evaluation of chalcone Mannich base derivatives as multifunctional agents for the potential treatment of Alzheimer’s disease. Bioorg Chem 2019; 87:395-408. [DOI: 10.1016/j.bioorg.2019.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023]
|
22
|
Kędzia J, Bartosik T, Drogosz J, Janecka A, Krajewska U, Janecki T. Synthesis and Cytotoxic Evaluation of 3-Methylidenechroman-4-ones. Molecules 2019; 24:molecules24101868. [PMID: 31096601 PMCID: PMC6572547 DOI: 10.3390/molecules24101868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022] Open
Abstract
In the search for new anticancer agents, a library of variously substituted 3-methylidenechroman-4-ones was synthesized using Horner–Wadsworth–Emmons methodology. Acylation of diethyl methylphosphonate with selected ethyl salicylates furnished 3-diethoxyphosphorylchromen-4-ones which were next used as Michael acceptors in the reaction with various Grignard reagents. The adducts were obtained as the mixtures of trans and cis diastereoisomers along with a small amount of enol forms. Their relative configuration and preferred conformation were established by NMR analysis. The adducts turned up to be effective Horner–Wadsworth–Emmons reagents giving 2-substituted 3-methylidenechroman-4-ones, which were then tested for their possible cytotoxic activity against two leukemia cell lines, HL-60 and NALM-6, and against MCF-7 breast cancer cell line. All new compounds (14a–o) were highly cytotoxic for the leukemic cells and showed a moderate or weak effect on MCF-7 cells. Analog 14d exhibited the highest growth inhibitory activity and was more potent than carboplatin against HL-60 (IC50 = 1.46 ± 0.16 µM) and NALM-6 (IC50 = 0.50 ± 0.05 µM) cells. Further tests showed that 14d induced apoptosis in NALM-6 cells, which was mediated mostly through the extrinsic pathway.
Collapse
Affiliation(s)
- Jacek Kędzia
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Tomasz Bartosik
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Urszula Krajewska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
23
|
Dhiman P, Malik N, Sobarzo-Sánchez E, Uriarte E, Khatkar A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules 2019; 24:molecules24030418. [PMID: 30678358 PMCID: PMC6385169 DOI: 10.3390/molecules24030418] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/17/2023] Open
Abstract
Monoamine oxidase inhibitions are considered as important targets for the treatment of depression, anxiety, and neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. This has encouraged many medicinal chemistry research groups for the development of most promising selective monoamine oxidase (MAO) inhibitors. A large number of plant isolates also reported for significant MAO inhibition potential in recent years. Differently substituted flavonoids have been prepared and investigated as MAO-A and MAO-B inhibitors. Flavonoid scaffold showed notable antidepressant and neuroprotective properties as revealed by various and established preclinical trials. The current review made an attempt to summarizing and critically evaluating the new findings on the quercetin and related flavonoid derivatives functions as potent MAO isoform inhibitors.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Faculty of Pharmaceutical Sciences, M. D. University, Rohtak 124001, India.
| | - Neelam Malik
- Faculty of Pharmaceutical Sciences, M. D. University, Rohtak 124001, India.
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8370178 Santiago, Chile.
| | - Eugenio Uriarte
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile.
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Anurag Khatkar
- Faculty of Pharmaceutical Sciences, M. D. University, Rohtak 124001, India.
| |
Collapse
|
24
|
Monteiro AFM, Viana JDO, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJB, Scotti MT, Scotti L. Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7912765. [PMID: 30693065 PMCID: PMC6332933 DOI: 10.1155/2018/7912765] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's and Alzheimer's, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson's and Alzheimer's diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson's and 3 for Alzheimer's. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson's docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer's docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.
Collapse
Affiliation(s)
- Alex France M. Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Jéssika De O. Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India
| | - Ernestine N. Zondegoumba
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon
| | | | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
- Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
25
|
Dhiman P, Malik N, Khatkar A. 3D-QSAR and in-silico Studies of Natural Products and Related Derivatives as Monoamine Oxidase Inhibitors. Curr Neuropharmacol 2018; 16:881-900. [PMID: 29189167 PMCID: PMC6080100 DOI: 10.2174/1570159x15666171128143650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The computational development of human monoamine oxidase (MAO) inhibitors led to advancement in drug design and the treatment of many neurodegenerative diseases and neuropsychiatric disorders. The computational development of human monoamine oxidase (MAO) inhibitors led to advancement in drug design and the treatment of many neurodegenerative diseases and neuropsychiatric disorders. Different natural heterocyclic structures are reported to display selective MAO inhibitory activity by preclinical and in-silico modeling. OBJECTIVE Currently, the major interest is devoted to the study of natural based therapeutic agents from the different categories. Therefore, we presenting the review to critically discuss and outline the recent advances in our knowledge on the importance of natural and natural based ligand-MAO insilico methods for novel MAO inhibitors. DISCUSSION Several natural and related synthetic heterocyclic compounds such as coumarins, β- carboline, piperine, naphthoquinone, morpholine, caffeine, amphetamine moreover flavonoids, chalcones, xanthones, curcumin are discussed for their MAO inhibitory profile along with molecular docking and quantitative structure-activity relationship studies. CONCLUSION It is clear that, by this computational drug design approach, more particular, reversible and potent compounds can be proposed as MAO inhibitors by exact changes on the fundamental framework.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| | - Neelam Malik
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| |
Collapse
|
26
|
Ishiki HM, Filho JMB, da Silva MS, Scotti MT, Scotti L. Computer-aided Drug Design Applied to Parkinson Targets. Curr Neuropharmacol 2018; 16:865-880. [PMID: 29189169 PMCID: PMC6080092 DOI: 10.2174/1570159x15666171128145423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Although the scientific community has performed great efforts in the study of PD, and from the most diverse points of view, the disease remains incurable. The exact mechanism underlying its progression is unclear, but oxidative stress, mitochondrial dysfunction and inflammation are thought to play major roles in the etiology. Objective Current pharmacological therapies for the treatment of Parkinson’s disease are mostly inadequate, and new therapeutic agents are much needed. Methods In this review, recent advances in computer-aided drug design for the rational design of new compounds against Parkinson disease; using methods such as Quantitative Structure-Activity Relationships (QSAR), molecular docking, molecular dynamics and pharmacophore modeling are discussed. Results In this review, four targets were selected: the enzyme monoamine oxidase, dopamine agonists, acetylcholine receptors, and adenosine receptors. Conclusion Computer aided-drug design enables the creation of theoretical models that can be used in a large database to virtually screen for and identify novel candidate molecules.
Collapse
Affiliation(s)
- Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | | | - Marcus T Scotti
- Federal University of Paraiba, Campus I, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Federal University of Paraiba, Campus I, Joao Pessoa-PB, Brazil
| |
Collapse
|
27
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Cruz-Monteagudo M, Borges F, Cordeiro MNDS, Helguera AM, Tejera E, Paz-Y-Mino C, Sanchez-Rodriguez A, Perera-Sardina Y, Perez-Castillo Y. Chemoinformatics Profiling of the Chromone Nucleus as a MAO-B/A2AAR Dual Binding Scaffold. Curr Neuropharmacol 2018; 15:1117-1135. [PMID: 28093976 PMCID: PMC5725544 DOI: 10.2174/1570159x15666170116145316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/14/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Abstract
Background: In the context of the current drug discovery efforts to find disease modifying therapies for Parkinson´s disease (PD) the current single target strategy has proved inefficient. Consequently, the search for multi-potent agents is attracting more and more attention due to the multiple pathogenetic factors implicated in PD. Multiple evidences points to the dual inhibition of the monoamine oxidase B (MAO-B), as well as adenosine A2A receptor (A2AAR) blockade, as a promising approach to prevent the neurodegeneration involved in PD. Currently, only two chemical scaffolds has been proposed as potential dual MAO-B inhibitors/A2AAR antagonists (caffeine derivatives and benzothiazinones). Methods: In this study, we conduct a series of chemoinformatics analysis in order to evaluate and advance the potential of the chromone nucleus as a MAO-B/A2AAR dual binding scaffold. Results: The information provided by SAR data mining analysis based on network similarity graphs and molecular docking studies support the suitability of the chromone nucleus as a potential MAO-B/A2AAR dual binding scaffold. Additionally, a virtual screening tool based on a group fusion similarity search approach was developed for the prioritization of potential MAO-B/A2AAR dual binder candidates. Among several data fusion schemes evaluated, the MEAN-SIM and MIN-RANK GFSS approaches demonstrated to be efficient virtual screening tools. Then, a combinatorial library potentially enriched with MAO-B/A2AAR dual binding chromone derivatives was assembled and sorted by using the MIN-RANK and then the MEAN-SIM GFSS VS approaches. Conclusion: The information and tools provided in this work represent valuable decision making elements in the search of novel chromone derivatives with a favorable dual binding profile as MAO-B inhibitors and A2AAR antagonists with the potential to act as a disease-modifying therapeutic for Parkinson´s disease.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal.,Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Fernanda Borges
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal
| | - M Natalia D S Cordeiro
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Aliuska Morales Helguera
- Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba
| | - Eduardo Tejera
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Cesar Paz-Y-Mino
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Aminael Sanchez-Rodriguez
- Departamento de Ciencias Naturales, Universidad Tecnica Particular de Loja, Calle Paris S/N, EC1101608 Loja, Ecuador
| | - Yunier Perera-Sardina
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile, Chile
| | - Yunierkis Perez-Castillo
- Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba.,Seccion Fisico Quimica y Matematicas, Departamento de Quimica, Universidad Tecnica Particular de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador
| |
Collapse
|
29
|
A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer's disease. Eur J Med Chem 2018; 152:570-589. [PMID: 29763806 DOI: 10.1016/j.ejmech.2018.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurodegenerative disease. The target enzymes inhibition including cholinesterase, beta-secretase, monoamine oxidase and inhibition of amyloid-β aggregation as well as oxidative stress and metal chelation play an important role in the pathogenesis of AD. Chroman-4-one scaffold with benzo-γ-pyrone network is a privileged structure in organic synthesis and drug design. A large number of research has been carried out on modified naturally occurring chromanone scaffolds and/or synthesized new analogues, to obtain effective drugs for AD management. The present review summarizes aspects related to the multi-target-directed ligands (MTDLs) strategy in enzyme targets modulation performed with natural and synthesized chroman-4-one-based structures to look at their potential in the management of multifactorial Alzheimer's disease.
Collapse
|
30
|
Takao K, Yahagi H, Uesawa Y, Sugita Y. 3-(E)-Styryl-2H-chromene derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg Chem 2018; 77:436-442. [DOI: 10.1016/j.bioorg.2018.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
31
|
Novel indanone derivatives as MAO B/H 3R dual-targeting ligands for treatment of Parkinson's disease. Eur J Med Chem 2018; 148:487-497. [PMID: 29477889 DOI: 10.1016/j.ejmech.2018.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/24/2022]
Abstract
The design of multi-targeting ligands was developed in the last decades as an innovative therapeutic concept for Parkinson's disease (PD) and other neurodegenerative disorders. As the monoamine oxidase B (MAO B) and the histamine H3 receptor (H3R) are promising targets for dopaminergic regulation, we synthetized dual-targeting ligands (DTLs) as non-dopaminergic receptor approach for the treatment of PD. Three series of compounds were developed by attaching the H3R pharmacophore to indanone-related MAO B motifs, leading to development of MAO B/H3R DTLs. Among synthesized indanone DTLs, compounds bearing the 2-benzylidene-1-indanone core structure showed MAO B preferring inhibition capabilities along with nanomolar hH3R affinity. Substitution of C5 and C6 position of the 2-benzylidene-1-indanones with lipophilic substituents revealed three promising candidates exhibiting inhibitory potencies for MAO B with IC50 values ranging from 1931 nM to 276 nM and high affinities at hH3R (Ki < 50 nM). Compound 3f ((E)-5-((4-bromobenzyl)oxy)-2-(4-(3-(piperidin-1-yl)propoxy)benzylidene)-2,3-dihydro-1H-inden-1-one, MAO B IC50 = 276 nM, hH3R Ki = 6.5 nM) showed highest preference for MAO B over MAO A (SI > 36). Interestingly, IC50 determinations after preincubation of enzyme and DTLs revealed also nanomolar MAO B potency for 3e (MAO B IC50 = 232 nM), a structural isomer of 3f, and 3d (MAO B IC50 = 541 nM), suggesting time-dependent inhibition modes. Reversibility of inhibition for all three compounds were confirmed by dilution studies in excess of substrate. Thus, indanone-substituted derivatives are promising lead structures for the design of MAO B/hH3R DTLs as novel therapeutic approach of PD therapy.
Collapse
|
32
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
33
|
Lin YF, Fong C, Peng WL, Tang KC, Liang YE, Li WT. Synthesis of 3-(2-Olefinbenzyl)-4H-chromen-4-one through Cyclobenzylation and Catalytic C-H Bond Functionalization Using Palladium(II). J Org Chem 2017; 82:10855-10865. [PMID: 28931283 DOI: 10.1021/acs.joc.7b01626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient strategy for synthesizing 3-(2-olefinbenzyl)-4H-chromen-4-one in two steps was developed. The first step is a cyclobenzylation reaction between (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one and benzyl bromide to produce homoisoflavonoid. The second step involves intermolecular Pd-catalyzed π-chelating-assisted C-H bond olefination. Using the C-2/C-3 double bond of chromone, palladium-catalyzed aryl C-H bond activation can be functionalized to generate ortho-olefination derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Yu-Feng Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| | - Chi Fong
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| | - Wan-Ling Peng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| | - Kuei-Chien Tang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| | - Yi-En Liang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei 11221, Taiwan, Republic of China
| |
Collapse
|
34
|
Simon L, Abdul Salam AA, Madan Kumar S, Shilpa T, Srinivasan KK, Byrappa K. Synthesis, anticancer, structural, and computational docking studies of 3-benzylchroman-4-one derivatives. Bioorg Med Chem Lett 2017; 27:5284-5290. [PMID: 29074256 DOI: 10.1016/j.bmcl.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50 = 20.1 µM) and 3h against HeLa cells (IC50 = 20.45 µM). 3b also exhibited moderate activity against HeLa cells (IC50 = 42.8 µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.
Collapse
Affiliation(s)
- Lalitha Simon
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India.
| | - S Madan Kumar
- PURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| | - T Shilpa
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - K K Srinivasan
- Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology and Management, Vishwothama Nagar, Bantakal, Udupi 576 115, India
| | - K Byrappa
- Department of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| |
Collapse
|
35
|
Feng B, Li X, Xia J, Wu S. Discovery of novel isoflavone derivatives as AChE/BuChE dual-targeted inhibitors: synthesis, biological evaluation and molecular modelling. J Enzyme Inhib Med Chem 2017; 32:968-977. [PMID: 28718678 PMCID: PMC6446070 DOI: 10.1080/14756366.2017.1347163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60 μM for AChE; 5.92 μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Bo Feng
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xinpeng Li
- b Food and Drug Administration of Beijing Yanqing District , Beijing 102100 , China
| | - Jie Xia
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Song Wu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
36
|
Yang HL, Cai P, Liu QH, Yang XL, Li F, Wang J, Wu JJ, Wang XB, Kong LY. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid- β aggregation for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 138:715-728. [DOI: 10.1016/j.ejmech.2017.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
37
|
Liu QH, Wu JJ, Li F, Cai P, Yang XL, Kong LY, Wang XB. Synthesis and pharmacological evaluation of multi-functional homoisoflavonoid derivatives as potent inhibitors of monoamine oxidase B and cholinesterase for the treatment of Alzheimer's disease. MEDCHEMCOMM 2017; 8:1459-1467. [PMID: 30108857 PMCID: PMC6071942 DOI: 10.1039/c7md00199a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
Abstract
A series of homoisoflavonoid derivatives was designed, synthesized and evaluated as potential multi-functional anti-Alzheimer's agents for their inhibitory activity on cholinesterase and monoamine oxidase. Among them, compound 16 showed moderate acetylcholinesterase (AChE) inhibitory activity (eeAChE IC50 = 0.89 ± 0.02 μM; hAChE IC50 = 0.657 ± 0.002 μM) and significant monoamine oxidase B (MAO-B) inhibitory activity (hMAO-B IC50 = 0.0372 ± 0.0002 μM). Kinetic analysis of AChE, MAO-B inhibition and molecular modeling studies revealed that compound 16 is a dual binding site inhibitor of AChE and noncompetitive inhibitor of MAO-B. Furthermore, 16 could penetrate through the blood-brain barrier (BBB) in vitro. Most importantly, oral administration of 16 demonstrated no marked signs of acute toxicity and it could significantly reverse scopolamine-induced memory impairment in mice. These results suggested that compound 16 is a promising multifunctional drug candidate with potential effect for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Qiao-Hong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Jia-Jia Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Fan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Pei Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Xue-Lian Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China . ; ; ; Tel: +86 25 83271405
| |
Collapse
|
38
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
39
|
Luo L, Li Y, Qiang X, Cao Z, Xu R, Yang X, Xiao G, Song Q, Tan Z, Deng Y. Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and β -amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg Med Chem 2017; 25:1997-2009. [DOI: 10.1016/j.bmc.2017.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/14/2022]
|
40
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
41
|
Takao K, Yamashita M, Yashiro A, Sugita Y. Synthesis and Biological Evaluation of 3-Benzylidene-4-chromanone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors. Chem Pharm Bull (Tokyo) 2017; 64:1203-7. [PMID: 27477661 DOI: 10.1248/cpb.c16-00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 3-benzylidene-4-chromanone derivatives (3-20) were synthesized and the structure-activity relationships for antioxidant and α-glucosidase inhibitory activities were evaluated. Among synthesized compounds, compounds 5, 13, 18, which contain catechol moiety, showed the potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity (5: EC50 13 µM; 13: EC50 14 µM; 18: EC50 13 µM). The compounds 12, 14, 18 showed higher α-glucosidase inhibitory activity (12: IC50 15 µM; 14: IC50 25 µM; 18: IC50 28 µM). The compound 18 showed both of potent DPPH radical scavenging and α-glucosidase inhibitory activities. These data suggest that 3-benzylidene-4-chromanone derivatives, such as compound 18, may serve as the lead compound for the development of novel α-glucosidase inhibitors with antioxidant activity.
Collapse
Affiliation(s)
- Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical and Health Sciences, Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | |
Collapse
|
42
|
Asadipour A, Pourshojaei Y, Eskandari K, Foroumadi A. A short synthesis of 7-amino alkoxy homoisoflavonoides. RSC Adv 2017. [DOI: 10.1039/c7ra08990b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of novel derivatives of homoisoflavonoids as potentially interesting medicinally important heterocycles in an efficient catalytic alternative two-step route has been introduced.
Collapse
Affiliation(s)
- Ali Asadipour
- Department of Medicinal Chemistry
- Faculty of Pharmacy & Pharmaceutics Research Center
- Institute of Neuropharmacology
- Kerman University of Medical Sciences
- Kerman
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry
- Faculty of Pharmacy & Pharmaceutics Research Center
- Institute of Neuropharmacology
- Kerman University of Medical Sciences
- Kerman
| | - Khalil Eskandari
- Department of Medicinal Chemistry
- Faculty of Pharmacy & Pharmaceutics Research Center
- Institute of Neuropharmacology
- Kerman University of Medical Sciences
- Kerman
| | - Alireza Foroumadi
- Drug Design and Development Research Center
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
43
|
Li Y, Qiang X, Luo L, Yang X, Xiao G, Zheng Y, Cao Z, Sang Z, Su F, Deng Y. Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg Med Chem 2017; 25:714-726. [DOI: 10.1016/j.bmc.2016.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 12/30/2022]
|
44
|
Wang Z, Wu J, Yang X, Cai P, Liu Q, Wang KD, Kong L, Wang X. Neuroprotective effects of benzyloxy substituted small molecule monoamine oxidase B inhibitors in Parkinson’s disease. Bioorg Med Chem 2016; 24:5929-5940. [DOI: 10.1016/j.bmc.2016.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022]
|
45
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
46
|
Mathew B, Haridas A, Uçar G, Baysal I, Adeniyi AA, Soliman ME, Joy M, Mathew GE, Lakshmanan B, Jayaprakash V. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int J Biol Macromol 2016; 91:680-95. [DOI: 10.1016/j.ijbiomac.2016.05.110] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|
47
|
( E )-3-Heteroarylidenechroman-4-ones as potent and selective monoamine oxidase-B inhibitors. Eur J Med Chem 2016; 117:292-300. [DOI: 10.1016/j.ejmech.2016.03.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 01/05/2023]
|
48
|
Li Y, Qiang X, Luo L, Li Y, Xiao G, Tan Z, Deng Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2016; 24:2342-51. [PMID: 27079124 DOI: 10.1016/j.bmc.2016.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
A series of 4-hydroxyl aurone derivatives were designed synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer's disease. The results demonstrated that most of the derivatives exhibited good multifunctional properties. Among them, compound 14e displayed good inhibitory activities of self- and Cu(2+)-induced Aβ1-42 aggregation with 99.2% and 84.0% at 25μM, respectively, and high antioxidant activity with a value 1.90-fold of Trolox. In addition, 14e also showed remarkable inhibitory activities of both monoamine oxidase A and B with IC50 values of 0.271μM and 0.393μM, respectively. However the 6-methoxyl aurones 15a-c revealed excellent selectivity toward MAO-B. Furthermore, the representative compounds 14e and 15b displayed good metal-chelating abilities and blood-brain barrier (BBB) permeabilities in vitro.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuxing Li
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ganyuan Xiao
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Xie SS, Lan JS, Wang X, Wang ZM, Jiang N, Li F, Wu JJ, Wang J, Kong LY. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2016; 24:1528-39. [DOI: 10.1016/j.bmc.2016.02.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022]
|
50
|
Gobbi S, Hu Q, Zimmer C, Engel M, Belluti F, Rampa A, Hartmann RW, Bisi A. Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. J Med Chem 2016; 59:2468-77. [DOI: 10.1021/acs.jmedchem.5b01609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Silvia Gobbi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Matthias Engel
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Federica Belluti
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Angela Rampa
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Alessandra Bisi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| |
Collapse
|