1
|
Jiang Y, Wang Y, Su F, Hou Y, Liao W, Li B, Mao W. Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics. Eur J Med Chem 2025; 286:117287. [PMID: 39832390 DOI: 10.1016/j.ejmech.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yutong Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Baichuan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Pelageev DN, Sabutski YE, Kovach SM, Balaneva NN, Menchinskaya ES, Chingizova EA, Burylova AL, Anufriev VP. Synthesis and Biological Activity of Glycosyl Thiazolyl Disulfides Based on Thiacarpine, an Analogue of the Cytotoxic Alkaloid Polycarpine from the Ascidian Polycarpa aurata. Mar Drugs 2025; 23:117. [PMID: 40137303 PMCID: PMC11943723 DOI: 10.3390/md23030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Polycarpine, a diimidazolyl disulfan alkaloid isolated from the ascidian Polycarpa aurata, showed high cytotoxic activity in vitro. However, in vivo experiments have shown that polycarpine has a high acute toxicity. At the same time, its synthetic thiazolyl analog, thiacarpine, showed less acute toxicity and had a greater therapeutic index, which makes its derivatives promising for further drug development. We assume that due to the presence of a disulfide bond in the molecules of polycarpine and thiacarpine and the possibility of its reduction in a living cell, the mercapto derivatives formed are responsible for the high activity of the original compounds. Based on this assumption, and to increase the selectivity of action, glycosyl disulfide conjugates of thiacarpine derivatives with thioglucose and thioxylose were synthesized and screened for their cytotoxic and antimicrobial activities. The target compounds did not show hemolytic activity at concentrations of up to 25 μM. Some of them exhibited moderate cytotoxic activity, blocked colony growth and migration of HeLa tumor cells, high antimicrobial activity, and inhibited biofilm formation comparable to or higher than that of a standard antibiotic (gentamicin) and antimycotic (nitrofungin).
Collapse
Affiliation(s)
- Dmitry N. Pelageev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| | - Yuri E. Sabutski
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| | - Svetlana M. Kovach
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Ajax Bay 10, Russky Island, Vladivostok 690922, Russia;
| | - Nadezhda N. Balaneva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| | - Ekaterina S. Menchinskaya
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| | - Ekaterina A. Chingizova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| | - Anna L. Burylova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
- Institute of the World Ocean, Far Eastern Federal University, Ajax Bay 10, Russky Island, Vladivostok 690922, Russia
| | - Victor Ph. Anufriev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (Y.E.S.); (N.N.B.); (E.S.M.); (E.A.C.); (A.L.B.); (V.P.A.)
| |
Collapse
|
3
|
Chen L, Lu H, Ballout F, El-Rifai W, Chen Z, Gokulan RC, McDonald OG, Peng D. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors. Int J Mol Sci 2025; 26:1992. [PMID: 40076620 PMCID: PMC11900214 DOI: 10.3390/ijms26051992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Ravindran Caspa Gokulan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Chitre TS, Hirode PV, Lokwani DK, Bhatambrekar AL, Hajare SG, Thorat SB, Priya D, Pradhan KB, Asgaonkar KD, Jain SP. In-silico studies of 2-aminothiazole derivatives as anticancer agents by QSAR, molecular docking, MD simulation and MM-GBSA approaches. J Biomol Struct Dyn 2023; 42:11396-11414. [PMID: 37811574 DOI: 10.1080/07391102.2023.2262594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Targeting Hec1/Nek2 is considered as crucial target for cancer treatment due to its significant role in cell proliferation. In pursuit of this, a series of twenty-five 2-aminothiazoles derivatives, along with their Hec1/Nek2 inhibitory activities were subjected to QSAR studies utilizing QSARINS software. The significant three descriptor QSAR model was generated, showing noteworthy statistical parameters: a correlation coefficient of cross validation leave one out (Q2LOO) = 0.7965, coefficient of determination (R2) = 0.8436, (R2ext) = 0.6308, cross validation leave many out (Q2LMO) = 0.7656, Concordance Correlation Coefficient (CCCCV = 0.8875), CCCtr = 0.9151, and CCCext = 0.0.7241. The descriptors integral to generated QSAR model include Moreau-Broto autocorrelation, which represents the spatial autocorrelation of a property along the molecular graph's topological structure (ATSC1i), Moran autocorrelation at lag 8, which is weighted by charges (MATS8c) and RPSA representing the total molecular surface area. It was noted that these descriptors significantly influence Hec1/Nek2 inhibitory activity of 2-aminothiazoles derivatives. New lead molecules were designed and predicted for their Hec1/Nek2 inhibitory activity based on the developed three descriptor model. Further, the ADMET and Molecular docking studies were carried out for these designed molecules. The three molecules were selected based on their docking score and further subjected for MD simulation studies. Post-MD MM-GBSA analysis were also performed to predicted the free binding energies of molecules. The study helped us to understand the key interactions between 2-aminothiazoles derivatives and Hec1/Nek2 protein that may be necessary to develop new lead molecules against cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Trupti S Chitre
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Purvaj V Hirode
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Deepak K Lokwani
- Rajarshi Shahu College of Pharmacy, Buldhana, Maharashtra, India
| | - Aniket L Bhatambrekar
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Sayli G Hajare
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Shubhangi B Thorat
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - D Priya
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Tamilnadu, India
| | - Kunal B Pradhan
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Kalyani D Asgaonkar
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Shirish P Jain
- Rajarshi Shahu College of Pharmacy, Buldhana, Maharashtra, India
| |
Collapse
|
5
|
2-Amino-4-(aminomethyl)thiazole-based derivatives as potential antitumor agents: design, synthesis, cytotoxicity and apoptosis inducing activities. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals (Basel) 2022; 15:ph15050580. [PMID: 35631406 PMCID: PMC9143880 DOI: 10.3390/ph15050580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k’w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial β-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.
Collapse
|
7
|
Huang X, Zhang G, Tang T, Gao X, Liang T. One shoot, three birds: Targeting NEK2 orchestrates chemoradiotherapy, targeted therapy, and immunotherapy in cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188696. [PMID: 35157980 DOI: 10.1016/j.bbcan.2022.188696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Combinational therapy has improved the cancer therapeutic landscape but is associated with a concomitant increase in adverse side reactions. Emerging evidence proposes that targeting one core target with multiple critical roles in tumors can achieve combined anti-tumor effects. This review focuses on NEK2, a member of serine/threonine kinases, with broad sequence identity to the mitotic regulator NIMA of the filamentous fungus Aspergillus nidulans. Elevated expression of NEK2 was initially found to promote tumorigeneses through abnormal regulation of the cell cycle. Subsequent studies report that NEK2 is overexpressed in a broad spectrum of tumor types and is associated with tumor progression and therapeutic resistance. Intriguingly, NEK2 has recently been revealed to mediate tumor immune escape by stabilizing the expression of PD-L1. Targeting NEK2 is thus becoming a promising approach for cancer treatment by orchestrating chemoradiotherapy, targeted therapy, and immunotherapy. It represents a novel strategy for inducing combined anti-cancer effects using a mono-agent.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
9
|
Tsai P, Hu G, Huang P, Jheng H, Lan C, Chen Y, Chang J, Chuang S, Huang J. Design, synthesis, and in vitro/vivo anticancer activity of 4‐substituted 7‐(3‐fluoro‐4‐methoxybenzyl)‐
7
H
‐pyrrolo[2,3‐
d
]pyrimidines. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Pei‐Yi Tsai
- Development Center for Biotechnology National Biotechnology Research Park Taipei City Taiwan
| | - Gong‐Siang Hu
- Department of Applied Chemistry National Chiayi University Chiayi City Taiwan
| | - Po‐Hsun Huang
- Department of Applied Chemistry National Chiayi University Chiayi City Taiwan
| | - Huei‐Lin Jheng
- Development Center for Biotechnology National Biotechnology Research Park Taipei City Taiwan
| | - Chi‐Hsuan Lan
- Department of Applied Chemistry National Chiayi University Chiayi City Taiwan
- The Training and Research Institute of Food and Agriculture National Chiayi University Chiayi City Taiwan
| | - You‐Sin Chen
- Department of Applied Chemistry National Chiayi University Chiayi City Taiwan
- The Training and Research Institute of Food and Agriculture National Chiayi University Chiayi City Taiwan
| | - Jia‐Ming Chang
- Development Center for Biotechnology National Biotechnology Research Park Taipei City Taiwan
| | - Shih‐Hsien Chuang
- Development Center for Biotechnology National Biotechnology Research Park Taipei City Taiwan
| | - Jiann‐Jyh Huang
- Department of Applied Chemistry National Chiayi University Chiayi City Taiwan
- The Training and Research Institute of Food and Agriculture National Chiayi University Chiayi City Taiwan
| |
Collapse
|
10
|
Farouk Elsadek M, Mohamed Ahmed B, Fawzi Farahat M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021; 26:1449. [PMID: 33800023 PMCID: PMC7962134 DOI: 10.3390/molecules26051449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Amongst sulfur- and nitrogen-containing heterocyclic compounds, the 2-aminothiazole scaffold is one of the characteristic structures in drug development as this essential revelation has several biological activities abiding it to act as an anticancer, antioxidant, antimicrobial and anti-inflammatory agent, among other things. Additionally, various 2-aminothiazole-based derivatives as medical drugs have been broadly used to remedy different kinds of diseases with high therapeutic influence, which has led to their wide innovations. Owing to their wide scale of biological activities, their structural variations have produced attention amongst medicinal chemists. The present review highlights the recently synthesized 2-aminothiazole-containing compounds in the last thirteen years (2008-2020). The originality of this proposal is based on the synthetic strategies developed to access the novel 2-aminothiazole derivatives (N-substituted, 3-substituted, 4-substituted, multi-substituted, aryl/alkyl substituents or acyl/other substituents). The literature reports many synthetic pathways of these 2-aminothiazoles associated with four different biological activities (anticancer, antioxidant, antimicrobial and anti-inflammatory activities). It is wished that this review will be accommodating for new views in the expedition for rationalistic designs of 2-aminothiazole-based medical synthetic pathways.
Collapse
Affiliation(s)
- Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11511, Egypt
| | - Badreldin Mohamed Ahmed
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| | - Mohamed Fawzi Farahat
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| |
Collapse
|
11
|
Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Med Chem Res 2021; 30:771-806. [PMID: 33469255 PMCID: PMC7809097 DOI: 10.1007/s00044-020-02686-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/06/2020] [Indexed: 11/01/2022]
Abstract
Currently, the development of anticancer drug resistance is significantly restricted the clinical efficacy of the most commonly prescribed anticancer drug. Malignant disease is widely prevalent and considered to be the major challenges of this century, which concerns the medical community all over the world. Consequently, investigating small molecule antitumor agents, which could decrease drug resistance and reduce unpleasant side effect is more desirable. 2-aminothiazole scaffold has emerged as a promising scaffold in medicinal chemistry and drug discovery research. This nucleus is a fundamental part of some clinically applied anticancer drugs such as dasatinib and alpelisib. Literature survey documented that different 2-aminothiazole analogs exhibited their potent and selective nanomolar inhibitory activity against a wide range of human cancerous cell lines such as breast, leukemia, lung, colon, CNS, melanoma, ovarian, renal, and prostate. In this paper, we have reviewed the progresses and structural modification of 2-aminothiazole to pursuit potent anticancers and also highlighted in vitro activities and in silico studies. The information will useful for future innovation. Representatives of 2-aminothiazole-containing compounds classification.
Collapse
|
12
|
Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev Med Chem 2020; 20:466-482. [PMID: 31644406 DOI: 10.2174/1389557519666191015204223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.
Collapse
Affiliation(s)
- Jilei Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Guiying Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haiping Chu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
13
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
14
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
15
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
16
|
Prevost JR, Kozlova A, Es Saadi B, Yildiz E, Modaffari S, Lambert DM, Pochet L, Wouters J, Dolušić E, Frédérick R. Convenient one-pot formation of highly functionalized 5-bromo-2-aminothiazoles, potential endocannabinoid hydrolase MAGL inhibitors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zhu Y, Wang Q, Luo H, Zhang G, Yu Y. Efficient and facile strategy to substituted 2-aminothiazoles via ring opening of α-nitroepoxides. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Design, Synthesis, and Anticancer Activities of Novel 2-Amino-4-phenylthiazole Scaffold Containing Amide Moieties. J CHEM-NY 2018. [DOI: 10.1155/2018/4301910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Appropriately substituted 2-amino-4-phenylthiazole derivatives were designed and synthesized according to the structural characteristics of crizotinib. The obtained compounds were characterized using 1H NMR, 13C NMR, and HRMS. The target compounds 5a–o were evaluated for their in vitro antiproliferative activity against A549, HeLa, HT29, and Karpas299 human cancer cell lines. Based on results of biological studies, some of these compounds exhibited significant antiproliferative activity. Compound 5b possessed outstanding growth inhibitory effects on the four cell lines, especially for HT29 cell with IC50 value of 2.01 µM. Along with the biological assay data, a molecular docking study suggests that the target compounds were a potential inhibitor.
Collapse
|
19
|
Riyadh SM, El-Motairi SA, Ahmed HEA, Khalil KD, Habib ESE. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem Biodivers 2018; 15:e1800231. [PMID: 29956887 DOI: 10.1002/cbdv.201800231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shojaa A El-Motairi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - El-Sayed E Habib
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
20
|
Ma C, Miao Y, Zhao M, Wu P, Zhou J, Li Z, Xie X, Zhang W. Synthesis of 2-aminothiazoles from styrene derivatives mediated by 1,3-dibromo-5,5-dimethylhydrantoin (DBH). Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Ayati A, Oghabi Bakhshaiesh T, Moghimi S, Esmaeili R, Majidzadeh-A K, Safavi M, Firoozpour L, Emami S, Foroumadi A. Synthesis and biological evaluation of new coumarins bearing 2,4-diaminothiazole-5-carbonyl moiety. Eur J Med Chem 2018; 155:483-491. [DOI: 10.1016/j.ejmech.2018.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023]
|
22
|
Tang X, Wang Z, Lei T, Zhou W, Chang S, Li D. Importance of protein flexibility on molecular recognition: modeling binding mechanisms of aminopyrazine inhibitors to Nek2. Phys Chem Chem Phys 2018; 20:5591-5605. [PMID: 29270587 DOI: 10.1039/c7cp07588j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NIMA-related kinase 2 (Nek2) plays a significant role in cell cycle regulation, and overexpression of Nek2 has been observed in several types of carcinoma, suggesting it is a potential target for cancer therapy. In this study, we attempted to gain more insight into the binding mechanisms of a series of aminopyrazine inhibitors of Nek2 through multiple molecular modeling techniques, including molecular docking, molecular dynamics (MD) simulations and free energy calculations. The simulation results showed that the induced fit docking and ensemble docking based on multiple protein structures yield better predictions than conventional rigid receptor docking, highlighting the importance of incorporating receptor flexibility into the accurate predictions of the binding poses and binding affinities of Nek2 inhibitors. Additionally, we observed that the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations did not show better performance than the docking scoring to rank the binding affinities of the studied inhibitors, suggesting that MM/GBSA is system-dependent and may not be the best choice for the Nek2 systems. Moreover, the detailed information on protein-ligand binding was characterized by the MM/GBSA free energy decomposition, and a number of derivatives with improved docking scores were designed. It is expected that our study can provide valuable information for the future rational design of novel and potent inhibitors of Nek2.
Collapse
Affiliation(s)
- Xinyi Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Roslan II, Ng KH, Gondal MA, Basheer C, Dastageer MA, Jaenicke S, Chuah GK. Visible Light-Mediated Coupling of Thioureas and 1,3-Dicarbonyls: Towards a Leaving Group-Free Synthesis of Aminothiazoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543
| | - Kian-Hong Ng
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543
| | - Mohammed Ashraf Gondal
- Physics Department; King Fahd University of Petroleum & Minerals; Dhahran 31261 Saudi Arabia
| | - Chanbasha Basheer
- Chemistry Department; King Fahd University of Petroleum & Minerals; Dhahran 31261 Saudi Arabia
| | - Mohamed A. Dastageer
- Physics Department; King Fahd University of Petroleum & Minerals; Dhahran 31261 Saudi Arabia
| | - Stephan Jaenicke
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543
| | - Gaik-Khuan Chuah
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543
| |
Collapse
|
24
|
Fu PK, Yang CY, Huang SC, Hung YW, Jeng KC, Huang YP, Chuang H, Huang NC, Li JP, Hsu MH, Chen JK. Evaluation of LPS-Induced Acute Lung Injury Attenuation in Rats by Aminothiazole-Paeonol Derivatives. Molecules 2017; 22:molecules22101605. [PMID: 28946699 PMCID: PMC6151495 DOI: 10.3390/molecules22101605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Paeonol is a key phenolic compound in the root bark of Moutan Cortex Radicis that has been used in traditional Chinese Medicine to ameliorate inflammation. A series of aminothiazole-paeonol derivatives (APDs) were synthesized in this work and subjected to preliminary evaluation in cells followed by verification in animals. Quantification of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in culture media of LPS-activated A549 cells, a lung epithelial adenocarcinoma cell line, were used to investigate the anti-inflammatory capability of APDs. ALI-bearing rats were employed to verify therapeutic efficacy of APDs according to observations of total cells, protein amounts, MCP-1 and IL-6 in bronchoalveolar lavage fluid (BALF). Histopathological examinations of lung tissues were consequently applied for validation of APDs. Among these compounds, 2-(2-aminothiazol-4-yl)-5-methoxyphenol (4) had the most potent activity, showing comparable inhibition of MCP-1/IL-6 and superior elimination of neutrophil infiltration and protein exudation in lungs compared to others as well as dexamethasone. This study demonstrated a comprehensive strategy to evaluate APDs through integration of cell-based screening and animal-based verification. In order to fulfill unmet needs of treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), APDs introduced in this work could be promising lead compounds to develop high potent anti-inflammation agents.
Collapse
Affiliation(s)
- Pin-Kuei Fu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
- Department of Biotechnology, Hungkuang University, Taichung 43302, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Chi-Yu Yang
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Su-Chin Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Yu-Wen Hung
- Animal Technology Laboratory, Agriculture Technology Research Institute, Miaoli 35053, Taiwan.
| | - Kee-Ching Jeng
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan.
| | - Ying-Pei Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hong Chuang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Nai-Chun Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua County 50007, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
25
|
Abstract
Never in Mitosis (NIMA) Related Kinase 2 (NEK2) plays a key role in regulating mitotic processes, including centrosome duplication and separation, microtubule stabilization, kinetochore attachment and spindle assembly checkpoint. NEK2 is aberrantly overexpressed in a wide variety of human cancers and has been implicated in various aspects of malignant transformation, including tumorigenesis, drug resistance and tumor progression. The close relationship between NEK2 and cancer has made it an attractive target for anticancer therapeutic development; however, the mechanisms of how NEK2 coordinates altered signaling to malignant transformation remains unclear. In this paper, we discuss the functional roles of NEK2 in cancer development; highlight some of the significant NEK2 signaling in cancer, and summarize recent advances in the development of NEK2 inhibitors.
Collapse
Affiliation(s)
- Yanfen Fang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| | - Xiongwen Zhang
- a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University , Shanghai , China
| |
Collapse
|
26
|
Roslan II, Ng KH, Chuah GK, Jaenicke S. Synthesis of 5-Phenylthiazolamines by Using Thiourea as an α-Bromination Shuttle. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore
| | - Kian-Hong Ng
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore
| | - Gaik-Khuan Chuah
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore
| | - Stephan Jaenicke
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore
| |
Collapse
|
27
|
Recent developments of 2-aminothiazoles in medicinal chemistry. Eur J Med Chem 2016; 109:89-98. [DOI: 10.1016/j.ejmech.2015.12.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
|
28
|
Zhao J, Xu J, Chen J, He M, Wang X. Potassium iodide and ammonium nitrate catalyzed aerobic oxidative cyclization of ketones with thioureas in ionic liquid: an access to 2-aminothiazoles. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Inhibition of Hec1 as a novel approach for treatment of primary liver cancer. Cancer Chemother Pharmacol 2014; 74:511-20. [PMID: 25038613 DOI: 10.1007/s00280-014-2540-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Highly expressed in cancer protein 1 (Hec1) is an oncogene and a promising molecular target for novel anticancer drugs. The purpose of this study was to evaluate the potential of a Hec1 inhibitor, TAI-95, as a treatment for primary liver cancer. METHODS In vitro and in vivo methods were used to test the activity of TAI-95. Gene expression analysis was used to evaluate clinical correlation of the target. RESULTS In vitro growth inhibition results showed that TAI-95 has excellent potency on a wide range of primary liver cancer cell lines (hepatoblastoma or hepatocellular carcinoma) (GI(50) 30-70 nM), which was superior to sorafenib and other cytotoxic agents. TAI-95 was relatively inactive in non-cancerous cell lines (GI(50) > 10 μM). TAI-95 disrupts the interaction between Hec1 and Nek2 and leads to degradation of Nek2, chromosomal misalignment, and apoptotic cell death. TAI-95 showed synergistic activity in selected cancer cell lines with doxorubicin, paclitaxel, and topotecan, but not with sorafenib. TAI-95 shows excellent potency in a Huh-7 xenograft mouse model when administered orally. Gene expression analysis of clinical samples demonstrated increased expression of Hec1/NDC80 and associated genes (Nek2, SMC1A, and SMC2) in 27 % of patients, highlighting the potential for using this therapeutic approach to target patients with high Hec1 expression. CONCLUSION Inhibition of Hec1 using small molecule approach may represent a promising novel approach for the treatment of primary liver cancers.
Collapse
|