1
|
Patel R, Nandini, Kharkwal H, Saha M, Sankaranarayanan M, Sharma S, Chander S. Recent Advancements Towards the Use of Vitamin D Isoforms and the Development of Their Synthetic Analogues as New Therapeutics. Biomedicines 2025; 13:1002. [PMID: 40299638 PMCID: PMC12025311 DOI: 10.3390/biomedicines13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Vitamin D and its metabolites are essential in various physiological processes, including muscle strength, metabolism, antifibrotic activity, and immune regulation. Researchers are focusing on developing vitamin D derivatives with optimized receptor selectivity and reduced systemic toxicity, enhancing their therapeutic efficacy against cancer, autoimmune disorders, and inflammatory diseases. Several analogues, such as alfacalcidol, paricalcitol, and falecalcitriol, are used for managing CKD-related bone disorders, while eldecalcitol is effective for osteoporosis, and calcipotriol against psoriasis. Recent studies have explored their impact on metabolic pathways, parathyroid hormone secretion, asthma, and liver fibrosis, revealing their broad clinical potential. Despite enormous efforts in the past decades, translations of vitamin D-drugs are disproportionately limited, mainly due to toxicity due to calcemic effects and undesirable metabolic profile. This review discusses structural modifications in vitamin D3, their influence on VDR binding, transcriptional activity, and calcium homeostasis, along with their role in targeting pathways like EGFR, KRAS, and Hedgehog in cancers. Advanced analytical techniques such as LC/ESI-MS/MS facilitate precise detection of vitamin D metabolites, further improving pharmacokinetic profiling. Future research may enable the clinical approval of novel vitamin D-based therapeutics with minimal disruption to calcium-phosphorus balance.
Collapse
Affiliation(s)
- Rajiv Patel
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India;
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201313, India
| | - Nandini
- Department of Pharmaceutics, School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India;
| | - Moumita Saha
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga 142001, India;
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani 333031, India;
| | - Saurabh Sharma
- Department of Surgical Oncology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India;
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122412, India
| |
Collapse
|
2
|
Maestro MA, Seoane S. The Centennial Collection of VDR Ligands: Metabolites, Analogs, Hybrids and Non-Secosteroidal Ligands. Nutrients 2022; 14:nu14224927. [PMID: 36432615 PMCID: PMC9692999 DOI: 10.3390/nu14224927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of vitamin D a century ago, a great number of metabolites, analogs, hybrids and nonsteroidal VDR ligands have been developed. An enormous effort has been made to synthesize compounds which present beneficial properties while attaining lower calcium serum levels than calcitriol. This structural review covers VDR ligands published to date.
Collapse
Affiliation(s)
- Miguel A. Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira, s/n, 15008 A Coruña, Spain
- Correspondence:
| | - Samuel Seoane
- Department of Physiology-CIMUS, University of Santiago, Campus Vida, 15005 Santiago, Spain
| |
Collapse
|
3
|
Seoane S, Gogoi P, Zárate-Ruíz A, Peluso-Iltis C, Peters S, Guiberteau T, Maestro MA, Pérez-Fernández R, Rochel N, Mouriño A. Design, Synthesis, Biological Activity, and Structural Analysis of Novel Des-C-Ring and Aromatic-D-Ring Analogues of 1α,25-Dihydroxyvitamin D 3. J Med Chem 2022; 65:13112-13124. [PMID: 36166643 DOI: 10.1021/acs.jmedchem.2c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The toxic calcemic effects of the natural hormone 1α,25-dihydroxyvitamin D3 (1,25D3, 1,25-dihydroxycholecalciferol) in the treatment of hyperproliferative diseases demand the development of highly active and noncalcemic vitamin D analogues. We report the development of two highly active and noncalcemic analogues of 1,25D3 that lack the C-ring and possess an m-phenylene ring that replaces the natural D-ring. The new analogues (3a, 3b) are characterized by an additional six-carbon hydroxylated side chain attached either to the aromatic nucleus or to the triene system. Both compounds were synthesized by the Pd-catalyzed tandem cyclization/cross coupling approach starting from alkyne 6 and diphenol 8. Key steps include a stereoselective Cu-assisted addition of a Grignard reagent to an aromatic alkyne and a Takai olefination of an aromatic aldehyde. The new compounds are noncalcemic and show transcriptional and antiproliferative activities similar to 1,25D3. Structural analysis revealed that they induce a large conformational rearrangement of the vitamin D receptor around helix 6.
Collapse
Affiliation(s)
- Samuel Seoane
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda. Barcelona s/n, Santiago de Compostela 15706, Spain
| | - Pranjal Gogoi
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Araceli Zárate-Ruíz
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Institut National de La Santé et de La Recherche Médicale (INSERM), U1258; Centre National de Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, Strasbourg, Illkirch 67400, France
| | - Stefan Peters
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| | - Thierry Guiberteau
- Laboratoire ICube─Université de Strasbourg, CNRS UMR 7357, Strasbourg 67000, France
| | - Miguel A Maestro
- Department of Chemistry-CICA, University of A Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Román Pérez-Fernández
- Department of Physiology-Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda. Barcelona s/n, Santiago de Compostela 15706, Spain
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Institut National de La Santé et de La Recherche Médicale (INSERM), U1258; Centre National de Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, Strasbourg, Illkirch 67400, France
| | - Antonio Mouriño
- Department of Organic Chemistry, Research Laboratory Ignacio Ribas, University of Santiago de Compostela, Avda. de las Ciencias s/n, Santiago de Compostela 15782, Spain
| |
Collapse
|
4
|
Ekimoto T, Kudo T, Yamane T, Ikeguchi M. Mechanism of Vitamin D Receptor Ligand-Binding Domain Regulation Studied by gREST Simulations. J Chem Inf Model 2021; 61:3625-3637. [PMID: 34189910 DOI: 10.1021/acs.jcim.1c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vitamin D receptor ligand-binding domain (VDR-LBD) undergoes conformational changes upon ligand binding. In this nuclear receptor family, agonistic or antagonistic activities are controlled by the conformation of the helix (H)12. However, all crystal structures of VDR-LBD reported to date correspond to the active H12 conformation, regardless of agonist/antagonist binding. To understand the mechanism of VDR-LBD regulation structurally, conformational samplings of agonist- and antagonist-bound rat VDR-LBD were performed using the generalized replica exchange with solute tempering (gREST) method. The gREST simulations demonstrated different structural responses of rat VDR-LBD to agonist or antagonist binding, whereas in conventional molecular dynamics simulations, the conformation was the same as that of the crystal structures, regardless of agonist/antagonist binding. In the gREST simulations, a spontaneous conformational change of H12 was observed only for the antagonist complex. The different responses to agonist/antagonist binding were attributed to hydrophobic core formation at the ligand-binding pocket and cooperative rearrangements of H11. The gREST method can be applied to the examination of structure-activity relationships for multiple VDR-LBD ligands.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takafumi Kudo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- Center for Computational Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Center for Computational Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
5
|
Kawagoe F, Mendoza A, Hayata Y, Asano L, Kotake K, Mototani S, Kawamura S, Kurosaki S, Akagi Y, Takemoto Y, Nagasawa K, Nakagawa H, Uesugi M, Kittaka A. Discovery of a Vitamin D Receptor-Silent Vitamin D Derivative That Impairs Sterol Regulatory Element-Binding Protein In Vivo. J Med Chem 2021; 64:5689-5709. [PMID: 33899473 DOI: 10.1021/acs.jmedchem.0c02179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin D3 metabolites inhibit the expression of lipogenic genes by impairing sterol regulatory element-binding protein (SREBP), a master transcription factor of lipogenesis, independent of their canonical activity through a vitamin D receptor (VDR). Herein, we designed and synthesized a series of vitamin D derivatives to search for a drug-like small molecule that suppresses the SREBP-induced lipogenesis without affecting the VDR-controlled calcium homeostasis in vivo. Evaluation of the derivatives in cultured cells and mice led to the discovery of VDR-silent SREBP inhibitors and to the development of KK-052 (50), the first vitamin D-based SREBP inhibitor that has been demonstrated to mitigate hepatic lipid accumulation without calcemic action in mice. KK-052 maintained the ability of 25-hydroxyvitamin D3 to induce the degradation of SREBP but lacked in the VDR-mediated activity. KK-052 serves as a valuable compound for interrogating SREBP/SCAP in vivo and may represent an unprecedented translational opportunity of synthetic vitamin D analogues.
Collapse
Affiliation(s)
- Fumihiro Kawagoe
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Aileen Mendoza
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Lisa Asano
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenjiro Kotake
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Sayuri Mototani
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeyuki Kurosaki
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yusuke Akagi
- Department of Biotechnology and Life Sciences, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasushi Takemoto
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Sciences, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Motonari Uesugi
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
6
|
Belorusova AY, Chalhoub S, Rovito D, Rochel N. Structural Analysis of VDR Complex with ZK168281 Antagonist. J Med Chem 2020; 63:9457-9463. [PMID: 32787090 DOI: 10.1021/acs.jmedchem.0c00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin D receptor (VDR) antagonists prevent the VDR activation function helix 12 from folding into its active conformation, thus affecting coactivator recruitment and antagonizing the transcriptional regulation induced by 1α,25-dihydroxyvitamin D3. Here, we report the crystal structure of the zebrafish VDR ligand-binding domain in complex with the ZK168281 antagonist, revealing that the ligand prevents optimal folding of the C-terminal region of VDR. This interference was confirmed by hydrogen-deuterium exchange mass spectrometry (HDX-MS) in solution.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France.,Medicinal Chemistry, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
7
|
Yamamoto K. Discovery of Nuclear Receptor Ligands and Elucidation of Their Mechanisms of Action. Chem Pharm Bull (Tokyo) 2019; 67:609-619. [DOI: 10.1248/cpb.c19-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
8
|
Abstract
![]()
For many individuals,
in particular during winter, supplementation
with the secosteroid vitamin D3 is essential for the prevention
of bone disorders, muscle weakness, autoimmune diseases, and possibly
also different types of cancer. Vitamin D3 acts via its
metabolite 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]
as potent agonist of the transcription factor vitamin D receptor (VDR).
Thus, vitamin D directly affects chromatin structure and gene regulation
at thousands of genomic loci, i.e., the epigenome and transcriptome
of its target tissues. Modifications of 1,25(OH)2D3 at its
side-chain, A-ring, triene system, or C-ring, alone and in combination,
as well as nonsteroidal mimics provided numerous potent VDR agonists
and some antagonists. The nearly 150 crystal structures of VDR’s
ligand-binding domain with various vitamin D compounds allow a detailed
molecular understanding of their action. This review discusses the
most important vitamin D analogs presented during the past 10 years
and molecular insight derived from new structural information on the
VDR protein.
Collapse
Affiliation(s)
- Miguel A Maestro
- Departamento de Química-CICA , Universidade da Coruña , ES-15071 A Coruña , Spain
| | - Ferdinand Molnár
- School of Science and Technology, Department of Biology , Nazarbayev University , KZ-010000 Astana , Kazakhstan
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine , University of Eastern Finland , FI-70211 Kuopio , Finland
| |
Collapse
|
9
|
Structural development of non-secosteroidal vitamin D receptor (VDR) ligands without any asymmetric carbon. Bioorg Med Chem 2018; 26:6146-6152. [PMID: 30446437 DOI: 10.1016/j.bmc.2018.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022]
Abstract
Non-secosteroidal VDR ligands without any assymmetric carbon were designed and synthesized based on the structure of the previously reported non-secosteroidal VDR agonist LG190178. The VDR-agonistic activity of all synthesized compounds was evaluated, and 7b emerged as a potent agonist activity with an EC50 value of 9.26 nM. Moreover, a docking simulation analysis was also performed to determine the binding mode of 7b with VDR-LBD.
Collapse
|
10
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
11
|
Otero R, Ishizawa M, Numoto N, Ikura T, Ito N, Tokiwa H, Mouriño A, Makishima M, Yamada S. 25 S-Adamantyl-23-yne-26,27-dinor-1α,25-dihydroxyvitamin D 3: Synthesis, Tissue Selective Biological Activities, and X-ray Crystal Structural Analysis of Its Vitamin D Receptor Complex. J Med Chem 2018; 61:6658-6673. [PMID: 29989817 DOI: 10.1021/acs.jmedchem.8b00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both 25 R- and 25 S-25-adamantyl-23-yne-26,27-dinor-1α,25-dihydroxyvitamin D3 (4a and 4b) were stereoselectively synthesized by a Pd(0)-catalyzed ring closure and Suzuki-Miyaura coupling between enol-triflate 7 and alkenyl-boronic ester 8. The 25 S isomer (4b) showed high vitamin D receptor (VDR) affinity (50% of that of the natural hormone 1α,25-dihydroxyvitamin D3, 1) and transactivation potency (kidney HEK293, 90%). In endogenous gene expression, it showed high cell-type selectivity for kidney cells (HEK293, CYP24A1 160% of 1), bone cells (MG63, osteocalcin 64%), and monocytes (U937, CAMP 96%) over intestine (SW480, CYP24A1 8%) and skin (HaCaT, CYP24A1 7%) cells. The X-ray crystal structural analysis of 4b in complex with rat VDR-ligand binding domain (LBD) showed the highest Cα positional shift from the 1/VDR-LBD complex at helix 11. Helix 11 of the 4b and 1 VDR-LBD complexes also showed significant differences in surface properties. These results suggest that 4b should be examined further as another candidate for a mild preventive osteoporosis agent.
Collapse
Affiliation(s)
- Rocio Otero
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Michiyasu Ishizawa
- Department of Biomedical Sciences , Nihon University School of Medicine , Itabashi-ku, Tokyo 173-8610 , Japan
| | - Nobutaka Numoto
- Medical Research Institute , Tokyo Medical and Dental University , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Teikichi Ikura
- Medical Research Institute , Tokyo Medical and Dental University , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Nobutoshi Ito
- Medical Research Institute , Tokyo Medical and Dental University , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Faculty of Science , Rikkyo University , Toshima-ku, Tokyo 171-8501 , Japan
| | - Antonio Mouriño
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Makoto Makishima
- Department of Biomedical Sciences , Nihon University School of Medicine , Itabashi-ku, Tokyo 173-8610 , Japan
| | - Sachiko Yamada
- Department of Biomedical Sciences , Nihon University School of Medicine , Itabashi-ku, Tokyo 173-8610 , Japan
| |
Collapse
|
12
|
Yoshizawa M, Itoh T, Hori T, Kato A, Anami Y, Yoshimoto N, Yamamoto K. Identification of the Histidine Residue in Vitamin D Receptor That Covalently Binds to Electrophilic Ligands. J Med Chem 2018; 61:6339-6349. [DOI: 10.1021/acs.jmedchem.8b00774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mami Yoshizawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tatsuya Hori
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Akira Kato
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuko Yoshimoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
13
|
Pretorius E, Bester J, Kell DB. A Bacterial Component to Alzheimer's-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease. J Alzheimers Dis 2018; 53:1237-56. [PMID: 27340854 PMCID: PMC5325058 DOI: 10.3233/jad-160318] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The progression of Alzheimer's disease (AD) is accompanied by a great many observable changes, both molecular and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects. We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS). These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power, indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly warranted.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs, UK.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, UK.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, Lancs, UK
| |
Collapse
|
14
|
Kojima H, Itoh T, Yamamoto K. On-site reaction for PPARγ modification using a specific bifunctional ligand. Bioorg Med Chem 2017; 25:6492-6500. [DOI: 10.1016/j.bmc.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
15
|
Kato A, Yamao M, Hashihara Y, Ishida H, Itoh T, Yamamoto K. Vitamin D Analogues with a p-Hydroxyphenyl Group at the C25 Position: Crystal Structure of Vitamin D Receptor Ligand-Binding Domain Complexed with the Ligand Explains the Mechanism Underlying Full Antagonistic Action. J Med Chem 2017; 60:8394-8406. [DOI: 10.1021/acs.jmedchem.7b00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Yamao
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuta Hashihara
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
16
|
Zheng Y, Tice CM, Singh SB. Conformational control in structure-based drug design. Bioorg Med Chem Lett 2017; 27:2825-2837. [DOI: 10.1016/j.bmcl.2017.04.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
|
17
|
Egawa D, Itoh T, Kato A, Kataoka S, Anami Y, Yamamoto K. SRC2-3 binds to vitamin D receptor with high sensitivity and strong affinity. Bioorg Med Chem 2017; 25:568-574. [DOI: 10.1016/j.bmc.2016.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 11/26/2022]
|
18
|
Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics. J Med Chem 2016; 59:7888-900. [DOI: 10.1021/acs.jmedchem.6b00682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuaki Anami
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobutaka Shimizu
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toru Ekimoto
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Daichi Egawa
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Mitsunori Ikeguchi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Keiko Yamamoto
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
19
|
Bock A, Bermudez M, Krebs F, Matera C, Chirinda B, Sydow D, Dallanoce C, Holzgrabe U, De Amici M, Lohse MJ, Wolber G, Mohr K. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. J Biol Chem 2016; 291:16375-89. [PMID: 27298318 PMCID: PMC4965584 DOI: 10.1074/jbc.m116.735431] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.
Collapse
Affiliation(s)
- Andreas Bock
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany,
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 und 4, 14195 Berlin, Germany,
| | - Fabian Krebs
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi," Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy, and
| | - Brian Chirinda
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Dominique Sydow
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 und 4, 14195 Berlin, Germany
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi," Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy, and
| | - Ulrike Holzgrabe
- Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi," Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy, and
| | - Martin J Lohse
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 und 4, 14195 Berlin, Germany
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany,
| |
Collapse
|
20
|
Kato A, Itoh T, Anami Y, Egawa D, Yamamoto K. Helix12-Stabilization Antagonist of Vitamin D Receptor. Bioconjug Chem 2016; 27:1750-61. [PMID: 27294600 DOI: 10.1021/acs.bioconjchem.6b00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To develop strong vitamin D receptor (VDR) antagonists and reveal their antagonistic mechanism, we designed and synthesized vitamin D analogues with bulky side chains based on the "active antagonist" concept in which antagonist prevents helix 12 (H12) folding. Of the synthesized analogues, compounds 3a and 3b showed strong antagonistic activity. Dynamic hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) and static X-ray crystal structure analyses indicated that compound 3a stabilizes H11-H12 but displaces H6-H7 so that 3a is a novel rather than "active" or "passive" type of antagonist. We classified 3a as a third type of antagonist and called it "H11-H12 stabilization antagonist". HDX-MS analysis indicated that antagonist 3b is an "active" antagonist. To date there are no reports relating to nuclear receptor antagonist that strongly stabilizes H12. In this study, we found first VDR antagonist that stabilizes H12 and we showed that antagonistic mechanism is diverse depending on each antagonist structure. Additionally, HDX-MS was proven to be very useful for investigations of protein structure alterations resulting from ligand binding.
Collapse
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
21
|
Ge Z, Hao M, Xu M, Su Z, Kang Z, Xue L, Zhang C. Novel nonsecosteroidal VDR ligands with phenyl-pyrrolyl pentane skeleton for cancer therapy. Eur J Med Chem 2016; 107:48-62. [DOI: 10.1016/j.ejmech.2015.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
|
22
|
Teske KA, Yu O, Arnold LA. Inhibitors for the Vitamin D Receptor-Coregulator Interaction. VITAMINS AND HORMONES 2015; 100:45-82. [PMID: 26827948 DOI: 10.1016/bs.vh.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vitamin D receptor (VDR) belongs to the superfamily of nuclear receptors and is activated by the endogenous ligand 1,25-dihydroxyvitamin D3. The genomic effects mediated by VDR consist of the activation and repression of gene transcription, which includes the formation of multiprotein complexes with coregulator proteins. Coregulators bind many nuclear receptors and can be categorized according to their role as coactivators (gene activation) or corepressors (gene repression). Herein, different approaches to develop compounds that modulate the interaction between VDR and coregulators are summarized. This includes coregulator peptides that were identified by creating phage display libraries. Subsequent modification of these peptides including the introduction of a tether or nonhydrolyzable bonds resulted in the first direct VDR-coregulator inhibitors. Later, small molecules that inhibit VDR-coregulator inhibitors were identified using rational drug design and high-throughput screening. Early on, allosteric inhibition of VDR-coregulator interactions was achieved with VDR antagonists that change the conformation of VDR and modulate the interactions with coregulators. A detailed discussion of their dual agonist/antagonist effects is given as well as a summary of their biological effects in cell-based assays and in vivo studies.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Yu
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
23
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
24
|
Anami Y, Sakamaki Y, Itoh T, Inaba Y, Nakabayashi M, Ikura T, Ito N, Yamamoto K. Fine tuning of agonistic/antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-Hexyl compound unexpectedly restored agonistic activity. Bioorg Med Chem 2015; 23:7274-81. [DOI: 10.1016/j.bmc.2015.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
25
|
Effects of alkyl side chains and terminal hydrophilicity on vitamin D receptor (VDR) agonistic activity based on the diphenylpentane skeleton. Bioorg Med Chem Lett 2015; 25:5362-6. [DOI: 10.1016/j.bmcl.2015.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
|
26
|
Egawa D, Itoh T, Yamamoto K. Characterization of covalent bond formation between PPARγ and oxo-fatty acids. Bioconjug Chem 2015; 26:690-8. [PMID: 25785518 DOI: 10.1021/acs.bioconjchem.5b00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covalent modification of proteins is important for normal cellular regulation. Here, we report on the covalent modification of peroxisome proliferator-activated receptor γ (PPARγ), an important drug target, by oxo-fatty acids. In this study, ESI mass spectroscopy showed that the reactivities of oxo-fatty acids with PPARγ are different from one another and that these behaviors are related to the structure of the fatty acids. X-ray crystallography showed that three oxo-fatty acids all bound to the same residue of PPARγ (Cys285), but displayed different hydrogen bonding modes. Moreover, fatty acids formed covalent bonds with both PPARγ moieties in the homodimer, one in an active conformation and the other in an alternative conformation. These two conformations may explain why covalently bound fatty acids show partial rather than full agonist activity.
Collapse
Affiliation(s)
- Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
27
|
Bock A, Kostenis E, Tränkle C, Lohse MJ, Mohr K. Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends Pharmacol Sci 2014; 35:630-8. [PMID: 25455830 DOI: 10.1016/j.tips.2014.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in almost every (patho)physiological process, which explains their importance as drug targets. GPCRs have long been regarded as on/off-switches, which is reflected by direct activation or blockade of these receptors through the majority of marketed GPCR drugs. In recent years, however, our view of GPCRs has changed dramatically. GPCRs are now appreciated as integrative and highly dynamic signaling machines which can adopt numerous distinct conformations enabling them to initiate a highly ramified signaling network. We argue here that it may be possible to chemically encode distinct signaling profiles into ligands by rational ligand design. We exemplify our hypothesis by fine-tuning partial and biased agonism, thereby exploiting two new principles of GPCR modulation - dynamic and dualsteric ligand binding. We propose that the emerging understanding of the multiplicity of receptor dynamics will eventually lead to rationally designed new drugs which pilot the pulse; in other words, that stabilize distinct receptor states to fine-tune GPCR signaling.
Collapse
Affiliation(s)
- Andreas Bock
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Christian Tränkle
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany.
| |
Collapse
|