1
|
Li M, Wei Y, Shi M. Electrochemically promoted tandem cyclization of functionalized methylenecyclopropanes: synthesis of tetracyclic benzazepine derivatives. Org Biomol Chem 2025; 23:4166-4171. [PMID: 40171828 DOI: 10.1039/d5ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study, an electrocatalytic tandem cyclization reaction of amide-tethered methylenecyclopropanes has been developed, which can realize the rapid construction of tetracyclic benzazepine derivatives in moderate yields with good functional group compatibility under relatively mild conditions. In this transformation, the catalytic amount of ferrocene serves as the electrocatalytic medium, and electron transfer on electrodes can replace oxidants or reducing agents, which is more environmentally friendly than and economically comparable to traditional photocatalysis or metal catalysis. Moreover, the origin of the regiochemistry is well elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Feng Z, Wu L, Zhou CY, Wang C. N-Heterocyclic Carbene Catalysis for Polycyclic Benzazepines Assembly: Regioselective Intramolecular Tandem Radical Cyclization. Org Lett 2024; 26:9068-9072. [PMID: 39392687 DOI: 10.1021/acs.orglett.4c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A variety of polycyclic benzazepines were rapidly constructed by NHC-catalyzed regioselective redox-neutral intramolecular tandem cyclization. Initial mechanistic studies revealed that a SET radical process was possibly involved.
Collapse
Affiliation(s)
- Zhiming Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Lili Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
3
|
Zhou N, Zhao F, Wang L, Gao X, Zhao X, Zhang M. Visible-Light-Induced Regioselective Cascade Radical Cyclization of α-Bromocarbonyls: Access to Benzazepine Derivatives. J Org Chem 2024; 89:2238-2246. [PMID: 38296256 DOI: 10.1021/acs.joc.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Visible-light-induced regioselective cascade radical cyclization of α-bromocarbonyls for the synthesis of benzazepine derivatives is described. In the presence of fac-Ir(ppy)3 (2.0 mol %) as a photocatalyst, 2,6-lutidine as a base, and dichloromethane as a solvent, the reactions proceed smoothly to afford seven-membered rings in good yields. This protocol features a broad substrate scope, excellent functional group tolerance, and mild reaction conditions. Preliminary mechanistic studies reveal that the generation of the α-carbon radical is more prone to react with the 1,1-diphenylethylene tethered acrylamide to generate the stable seven-membered heterocycle.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
4
|
Cheng Z, Hwang SS, Bhave M, Rahman T, Chee Wezen X. Combination of QSAR Modeling and Hybrid-Based Consensus Scoring to Identify Dual-Targeting Inhibitors of PLK1 and p38γ. J Chem Inf Model 2023; 63:6912-6924. [PMID: 37883148 DOI: 10.1021/acs.jcim.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug-drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure-activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.
Collapse
Affiliation(s)
- Zixuan Cheng
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| | - Siaw San Hwang
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne 3122, Victoria, Australia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Xavier Chee Wezen
- School of Engineering and Science, Swinburne University of Technology Sarawak, 93350 Kuching, Malaysia
| |
Collapse
|
5
|
Zhang X, Jiang L, Li Y, Feng Q, Sun X, Wang Y, Zhao M. Discovery of novel benzylquinazoline molecules as p97/VCP inhibitors. Front Pharmacol 2023; 14:1209060. [PMID: 37388451 PMCID: PMC10300352 DOI: 10.3389/fphar.2023.1209060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Protein p97 is an extensively investigated AAA ATPase with various cellular activities, including cell cycle control, ubiquitin-proteasome system, autophagy, and NF-κB activation. Method: In this study, we designed, synthesized and evaluated eight novel DBeQanalogs as potential p97 inhibitors in vivo and in vitro. Results: In the p97 ATPase inhibition assay, compounds 6 and 7 showed higher potency than the known p97 inhibitors, DBeQ and CB-5083. Compounds 4-6 dramatically induced G0/G1 phase arrest in the HCT116 cells, and compound 7 arrested the cells in both G0/G1 and S phases. Western blots showed elevated levels of SQSTM/p62, ATF-4, and NF-κB in HCT116 cells with the treatment of compounds 4-7, confirming their role in inhibiting the p97 signaling pathway in cells. In addition, the IC50 of compounds 4-6 against HCT116, RPMI-8226, and s180 proliferation were 0.24-6.9 µM with comparable potency as DBeQ. However, compounds 4-6 displayed low toxicity against the normal human colon cell line. Thus, compounds 6 and 7 were proved to be potential p97 inhibitors with less cytotoxicity. In vivo studies using the s180 xenograft model have demonstrated that compound 6 inhibited tumor growth, led to a significant reduction of p97 concentration in the serum and tumor, and indicated non-toxicity on the body weight and organ-to-brain weight ratios except for the spleen at the dose of 90 μmol/kg/day for 10 days. Furthermore, the present study indicated that compound 6 may not induce s180 mice myelosuppression often observed in the p97 inhibitors. Conclusion: Compound 6 displayed high binding affinity to p97, great p97 ATPase inhibition, selective cytotoxicity, remarkable anti-tumor effect, and upregulated safety, which improved the clinical potential of p97 inhibitors.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Lingna Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yixin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qiqi Feng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiulin Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Yaonan Wang
- Core Facilities Centre, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
6
|
Figueroa-Valverde L, Díaz-Cedillo F, Rosas-Nexticapa M, Alvarez-Ramirez M, Mateu-Armad MV, López-Ramos M, López-Gutierrez T. Interaction of Some Amino-Nitrile Derivatives with Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) Using a Theoretical Model. Drug Res (Stuttg) 2023. [PMID: 37172939 DOI: 10.1055/a-2062-3571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Some studies indicate that the angiogenesis process is related to vascular endothelial growth factor, which can interact with endothelial cell surface receptors (VEGF-R1, VEGF-R2, and VEGF-R3); this biochemical process and other factors result in the promotion and growth of new blood vessels under normal conditions. However, some studies indicate that this phenomenon could also occur in cancer cells. It is important to mention that some amino derivatives have been prepared as VEGF-R1 inhibitors; however, their interaction with VEGF-R1 is not clear, perhaps due to different experimental approaches or differences in their chemical structure. OBJECTIVE The aim of this study was to evaluate the theoretical interaction of several amino-nitrile derivatives (Compounds 1 to 38) with VEGF-R1. METHODS The theoretical interaction of amino-nitrile derivatives with VEGF-R1 was carried out using the 3hng protein as the theoretical model. In addition, cabozantinib, pazopanib, regorafenib, and sorafenib were used as controls in the DockingServer program. RESULTS The results showed different amino acid residues involved in the interaction of amino-nitrile derivatives with the 3hng protein surface compared with the controls. In addition, the inhibition constant (Ki) was lower for Compounds 10 and 34 than for cabozantinib. Other results show that Ki for Compounds 9, 10, 14, 27-29 and 34-36 was lower in comparison with pazopanib, regorafenib, and sorafenib. CONCLUSIONS All theoretical data suggest that amino-nitrile derivatives could produce changes in the growth of some cancer cell lines through VEGFR-1 inhibition. Therefore, these amino-nitrile derivatives could be a therapeutic alternative to treat some types of cancer.
Collapse
Affiliation(s)
- Lauro Figueroa-Valverde
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, Camp., México
| | - Francisco Díaz-Cedillo
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Santo Tomas, México
| | - Marcela Rosas-Nexticapa
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Magdalena Alvarez-Ramirez
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Maria Virginia Mateu-Armad
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Maria López-Ramos
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, Camp., México
| | - Tomas López-Gutierrez
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, Camp., México
| |
Collapse
|
7
|
Zamani Hargalani F, Shafaei F, Khandan S, Rostami-Charati F. Green Synthesis and Biological Activity Investigation of New Pyrimidotriazinoazepines. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Fariba Zamani Hargalani
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Shafaei
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faramarz Rostami-Charati
- Research Center for Conservation of Culture Relicst (RCCCR), Research Institute of Cultural Heritage & Tourism, Tehran, Iran
| |
Collapse
|
8
|
Song ZQ, Hou YJ, Sun HY, Zhong QD. Crystal structure of 9-( t-butyl)-3,11-dihydro-6 H-pyrazolo [1,5- a]pyrrolo[3′,2′:5,6]pyrido[4,3- d]pyrimidin-6-one hemihydrate, C 30H 32N 10O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C30H32N10O3, monoclinic, P21/c (no. 14), a = 10.447(2) Å, b = 20.130(4) Å, c = 14.772(3) Å, β = 113.001(3)°, V = 2859.7(10) Å3, Z = 4, R
gt
(F) = 0.0556, wR
ref
(F
2) = 0.1663, T = 296 K.
Collapse
Affiliation(s)
- Zhi-Qiang Song
- School of Pharmacy , North China University of Science and Technology , 063200 , Caofeidian District , Tangshan , P. R. China
| | - Ying-Jie Hou
- School of Pharmacy , North China University of Science and Technology , 063200 , Caofeidian District , Tangshan , P. R. China
| | - Hai-Yang Sun
- School of Pharmacy , North China University of Science and Technology , 063200 , Caofeidian District , Tangshan , P. R. China
| | - Qi-Di Zhong
- School of Pharmacy , North China University of Science and Technology , 063200 , Caofeidian District , Tangshan , P. R. China
| |
Collapse
|
9
|
Zhang J, Yang R, Li L, Liu J, Liu Y, Song H, Wang Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022; 27:molecules27196700. [PMID: 36235237 PMCID: PMC9573203 DOI: 10.3390/molecules27196700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing azepine and acylhydrazone moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against the tobacco mosaic virus (TMV), among which compounds 5c, 6a, 6h, 6t, 6v, and 6y exhibited higher inactivation, curative, and protection activities in vivo than that of ribavirin (40 ± 1, 37 ± 1, 39 ± 2% at 500 mg/L). Especially, 6y showed comparable activities to that of ningnanmycin (57 ± 2, 55 ± 3, 58 ± 1% at 500 mg/L). Meanwhile, we were pleased to find that almost all these derivatives showed good larvicidal activities against Plutella xylostella. Meanwhile, these derivatives also showed a broad spectrum of fungicidal activities.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Lili Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| |
Collapse
|
10
|
Aghaei-Meybodi Z, Ghambarian M, Khandan Barani K, Sheikholeslami-Farahani F. Green Synthesis and Study of Biological Activity of New Benzopyrimidoazepines: Reduction of Organic Pollutants Using Synthesized Fe 3O 4/TiO 2/CuO@MWCNTs MNCs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Zahra Aghaei-Meybodi
- Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ghambarian
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | | | |
Collapse
|
11
|
Chi Z, Bai Y, Li J, Wang K, Xu Y, Luan Y. Design, synthesis and antitumor activity study of PARP-1/HDAC dual targeting inhibitors. Bioorg Med Chem Lett 2022; 71:128821. [PMID: 35643262 DOI: 10.1016/j.bmcl.2022.128821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Both poly(ADP-ribose)polymerase-1 (PARP-1) and histone deacetylase (HDAC) are important antitumor targets and have attracted extensive attention. In this work, a total of fourteen PARP-1/HDAC dual targeting inhibitors were designed and synthesized using either benzopyrazole or benzimidazole as core structures. Two leading compounds 1-8-6 and 1-8-7 were proven to be dual targeting inhibitors of PARP-1 and HDAC6, and showed high antiproliferative activities against six human cancer cell lines with IC50 values in micromole range. Moreover, compounds 1-8-6 and 1-8-7 could impair tumor cell proliferation in 48 h and 72 h with much higher potency than co-treatment of Olaparib and Tubastatin A. 1-8-6 displayed remarkable anti-migration and anti-angiogenesis activities. Meanwhile, western blot experiment result showed that 1-8-6 was able to heighten expression level of acetylated α-tubulin with marginal effects to acetylated histones H3 and H4. Finally, docking simulation work showed that 1-8-6 could fit into the active sites of PARP-1 and HDAC6. All results indicated that 1-8-6 is a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Ziwei Chi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Ying Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198 Nanjing, China
| | - Jing Li
- Department of Pharmacology, School of Pharmacology, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacology, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198 Nanjing, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Kadhim MM, Tabarsaei N, Ghorchibeigi M, Sadeghi Meresht A. New MCRs in Ionic Liquid: Green Synthesis and Biological Activity Investigation of New Pyrazoloazepines: Application of Ag/Fe 3O 4/CdO@MWCNT MNCs in Reduction of Organic Pollutant. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | - Navisa Tabarsaei
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Mona Ghorchibeigi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdollah Sadeghi Meresht
- Active Pharmaceutical Ingeredients Research Center (APIRC), Tehran Medicinal Science Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Zamani Hargalani F, Shafaei F. Green Synthesis and Antioxidant Activity Investigation of New Thiazinotriazines: Reduction of Organic Pollutant Using Fe 3O 4/TiO 2/CuO@MWCNTs MNCs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2099913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fariba Zamani Hargalani
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Shafaei
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Moradiya RB, Morja MI, Chauhan PM, Chikhalia KH. Metal‐Catalyzed Approaches for the Construction of Azepinones. ChemistrySelect 2022. [DOI: 10.1002/slct.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Riddhi B. Moradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Mayur I. Morja
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | | | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
16
|
Mao B, Zhang XY, Wei Y, Shi M. Visible-light-mediated intramolecular radical cyclization of α-brominated amide-tethered alkylidenecyclopropanes. Chem Commun (Camb) 2022; 58:3653-3656. [PMID: 35213679 DOI: 10.1039/d1cc07136j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ring-opening/cyclization cascade reaction of α-brominated amide-tethered alkylidenecyclopropanes in the presence of photocatalyst 4CzIPN under visible-light irradiation was developed to afford polycyclic benzazepine derivatives in good yields with broad substrate scope and good functional tolerance. A plausible mechanism involving a halogen atom transfer (XAT) process and a radical chain process is proposed for this reaction. This study provides a concise and practical strategy for the synthesis of benzazepine derivatives.
Collapse
Affiliation(s)
- Ben Mao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Yu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| |
Collapse
|
17
|
Akunuri R, Vadakattu M, Kaul G, Akhir A, Saxena D, Ahmad MN, Bujji S, Joshi SV, Dasgupta A, Yaddanapudi VM, Chopra S, Nanduri S. Synthesis and Antibacterial Evaluation of 3,4‐Dihydro‐1
H
‐benzo[
b
]azepine‐2,5‐dione Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana State India
| |
Collapse
|
18
|
Singh H, Thirupathi A, Das B, Janni M, Kumari R, Singh S, Rashid M, Wahajuddin M, Balamurali MM, Jagavelu K, Peruncheralathan S. 2,3-Difunctionalized Benzo[ b]thiophene Scaffolds Possessing Potent Antiangiogenic Properties. J Med Chem 2021; 65:120-134. [PMID: 34914389 DOI: 10.1021/acs.jmedchem.1c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new class of 2-anilino-3-cyanobenzo[b]thiophenes (2,3-ACBTs) was studied for its antiangiogenic activity for the first time. One of the 2,3-ACBTs inhibited tubulogenesis in a dose-dependent manner without any toxicity. The 2,3-ACBTs significantly reduced neovascularization in both ex vivo and in vivo angiogenic assays without affecting the proliferation of endothelial cells. Neovascularization was limited through reduced phosphorylation of Akt/Src and depolymerization of f-actin and β-tubulin filaments, resulting in reduced migration of cells. In addition, the 2,3-ACBT compound disrupted the preformed angiogenic tubules, and docking/competitive binding studies showed that it binds to VEGFR2. Compound 2,3-ACBT had good stability and intramuscular profile, translating in suppressing the tumor angiogenesis induced in a xenograft model. Overall, the present study suggests that 2,3-ACBT arrests angiogenesis by regulating the Akt/Src signaling pathway and deranging cytoskeletal filaments of endothelial cells.
Collapse
Affiliation(s)
- Himalaya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Bishwaprava Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Manojkumar Janni
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| | - Renu Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Wahajuddin
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Musuvathi Motilal Balamurali
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Jatni, Khurda 752050, India
| |
Collapse
|
19
|
Shahin R, Al-Hashimi NN, Daoud NEH, Aljamal S, Shaheen O. QSAR-guided pharmacophoric modeling reveals important structural requirements for Polo kinase 1 (Plk1) inhibitors. J Mol Graph Model 2021; 109:108022. [PMID: 34562852 DOI: 10.1016/j.jmgm.2021.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Targeting Polo-like kinase 1 (Plk1) by molecular inhibitors is being a promising approach for tumor therapy. Nevertheless, insufficient methodical analyses have been done to characterize the interactions inside the Plk1 binding pocket. In this study, an extensive combined ligand and structure-based drug design workflow was conducted to data-mine the structural requirements for Plk1 inhibition. Consequently, the binding modes of 368 previously known Plk1 inhibitors were investigated by pharmacophore generation technique. The resulted pharmacophores were engaged in the context of Genetic function algorithm (GFA) and Multiple linear regression (MLR) analyses to search for a prognostic QSAR model. The most successful QSAR model was with statistical criteria of (r2277 = 0.76, r2adj = 0.76, r2pred = 0.75, Q2 = 0.73). Our QSAR-selected pharmacophores were validated by Receiver Operating Characteristic (ROC) curve analysis. Later on, the best QSAR model and its associated pharmacophoric hypotheses (HypoB-T4-5, HypoI-T2-7, HypoD-T4-3, and HypoC-T3-3) were used to identify new Plk1 inhibitory hits retrieved from the National Cancer Institute (NCI) database. The most potent hits exhibited experimental anti-Plk1 IC50 of 1.49, 3.79. 5.26 and 6.35 μM. Noticeably, our hits, were found to interact with the Plk1 kinase domain through some important amino acid residues namely, Cys67, Lys82, Cys133, Phe183, and Asp194.
Collapse
Affiliation(s)
- Rand Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Nabil N Al-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Nour El-Huda Daoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Salah Aljamal
- Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | - Omar Shaheen
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan.
| |
Collapse
|
20
|
Savari M, Varasteh‐Moradi A, Sayyed‐Alangi SZ, Hossaini Z, Zafarmehrabian R. Ag/Fe
3
O
4
/TiO
2
@MWCNTs as a reusable organometallic nanocatalyst promoted green synthesis of new pyridobenzoazepines: Study of biological activity and reduction of organic pollutants. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mehdi Savari
- Department of Chemistry, Gorgan Branch Islamic Azad University Gorgan Iran
| | | | | | | | | |
Collapse
|
21
|
Orimi FG, Mirza B, Hossaini Z. Production of benzazepine derivatives via four-component reaction of isatins: study of antioxidant activity. Mol Divers 2021; 25:2171-2182. [PMID: 32524218 DOI: 10.1007/s11030-020-10110-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
Abstract
In current research, benzazepine derivative is synthesized via a new process of four-component reaction of isatin or its derivatives, α-haloketones, activated acetylenic compounds, isoquinoline and potassium fluoride/clinoptilolite nanoparticles (KF/CP NPs) in acidic solution of H2O2 in water at room temperature. Also, antioxidation property of some prepared benzazepines is investigated by employing trapping diphenyl-picrylhydrazine (DPPH) radical and ability of ferric reduction experiment. Among investigated compounds, compounds 5c have good results relative to BHT and TBHQ as standard antioxidant. Also, the Gram-positive and Gram-negative bacteria disk diffusion research is used for the confirmation of antimicrobial power of some prepared benzazepines. The achieved outcomes of disk diffusion experiment showed that these compounds avoided the growth of bacteria. Our procedure has a few benefits relative to reported method such as good rate of reaction, product with high efficiency, simple removal of catalyst from mixture of reaction. In the yield of the product, KF/clinoptilolite nanoparticles show a satisfactory recyclable activity.
Collapse
Affiliation(s)
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | |
Collapse
|
22
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
23
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
24
|
Akunuri R, Vadakattu M, Bujji S, Veerareddy V, Madhavi YV, Nanduri S. Fused-azepinones: Emerging scaffolds of medicinal importance. Eur J Med Chem 2021; 220:113445. [PMID: 33901899 DOI: 10.1016/j.ejmech.2021.113445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Hymenialdisine an alkaloid of oroidin class has drawn the attention of researchers owing to its unique structural features and interesting biological properties. Hymenialdisine exhibited promising inhibitory activity against a number of therapeutically important kinases viz., CDKs, GSK-3β etc., and showed anti-cancer, anti-inflammatory, anti-HIV, neuroprotective, anti-fouling, anti-plasmodium properties. Hymenialdisine and other structurally related oroidin alkaloids such as dibromo-hymenialdisine, stevensine, hymenin, axinohydantoin, spongicidines A-D, latonduines and callyspongisines contain pyrrolo[2,3-c] azepin-8-one core in common. Keeping in view of the interesting structural and therapeutic features of HMD, several structural modifications were carried around the fused-azepinone core which resulted in a number of diverse structural motifs like indolo-azepinones, paullones, aza-paullones, darpones and 5,7-dihydro-6H-benzo[b]pyrimido[4,5-d] azepin-6-one. In this review, an attempt is made to collate and review the structures of diverse hymenialdisine and related fused-azepinones of synthetic/natural origin and their biological properties.
Collapse
Affiliation(s)
- Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Manasa Vadakattu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sushmitha Bujji
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vaishnavi Veerareddy
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
25
|
Abstract
Pyridoazepinones are potentially interesting structures, yet they are still underexploited in the medicinal chemistry field and hard to obtain synthetically. We present a general and flexible synthetic route to substituted pyridoazepinones, enabled by the xanthate addition-transfer process, which furnishes the target molecules from readily available starting materials in generally good yields. The method shows good functional group tolerance and allows the preparation of pyridoazepinone scaffolds on gram scale.
Collapse
Affiliation(s)
- Valentin S Dorokhov
- Laboratoire de Synthèse Organique, CNRS, UMR 7652, Ecole Polytechnique, Palaiseau Cedex, 91128, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS, UMR 7652, Ecole Polytechnique, Palaiseau Cedex, 91128, France
| |
Collapse
|
26
|
Karatas M, Chaikuad A, Berger B, Kubbutat MHG, Totzke F, Knapp S, Kunick C. 7-(2-Anilinopyrimidin-4-yl)-1-benzazepin-2-ones Designed by a "Cut and Glue" Strategy Are Dual Aurora A/VEGF-R Kinase Inhibitors. Molecules 2021; 26:molecules26061611. [PMID: 33799460 PMCID: PMC7998669 DOI: 10.3390/molecules26061611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022] Open
Abstract
Although overexpression and hyperactivity of protein kinases are causative for a wide range of human cancers, protein kinase inhibitors currently approved as cancer drugs address only a limited number of these enzymes. To identify new chemotypes addressing alternative protein kinases, the basic structure of a known PLK1/VEGF-R2 inhibitor class was formally dissected and reassembled. The resulting 7-(2-anilinopyrimidin-4-yl)-1-benzazepin-2-ones were synthesized and proved to be dual inhibitors of Aurora A kinase and VEGF receptor kinases. Crystal structures of two representatives of the new chemotype in complex with Aurora A showed the ligand orientation in the ATP binding pocket and provided the basis for rational structural modifications. Congeners with attached sulfamide substituents retained Aurora A inhibitory activity. In vitro screening of two members of the new kinase inhibitor family against the cancer cell line panel of the National Cancer Institute (NCI) showed antiproliferative activity in the single-digit micromolar concentration range in the majority of the cell lines.
Collapse
Affiliation(s)
- Mehmet Karatas
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, BMLS, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (A.C.); (S.K.)
- Institut für Pharmazeutische Chemie, Johann Wolfgang-Goethe-Universität, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Bianca Berger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
| | | | - Frank Totzke
- Reaction Biology Europe GmbH, 79108 Freiburg, Germany; (M.H.G.K.); (F.T.)
| | - Stefan Knapp
- Structural Genomics Consortium, BMLS, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (A.C.); (S.K.)
- Institut für Pharmazeutische Chemie, Johann Wolfgang-Goethe-Universität, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany; (M.K.); (B.B.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
- Correspondence: ; Tel.: +49-531-391-2754
| |
Collapse
|
27
|
Yakovenko GG, Yagodkina-Yakovenko MS, Suykov SY, Vovk MV. A Beckmann rearrangement initiated by trifluoromethanesulfonic anhydride in the synthesis of compounds containing a new pyrazolo[3',4':5,6]pyrido[3,2-b]azepine heterocyclic system. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02893-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Sun S, Zhao W, Li Y, Chi Z, Fang X, Wang Q, Han Z, Luan Y. Design, synthesis and antitumor activity evaluation of novel HDAC inhibitors with tetrahydrobenzothiazole as the skeleton. Bioorg Chem 2021; 108:104652. [PMID: 33497873 DOI: 10.1016/j.bioorg.2021.104652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
HDACs as important targets for cancer therapy have attracted extensive attentions. In this work, a series of sixteen hydroxamic acid based HDAC inhibitors were designed and synthesized with 4,5,6,7-tetrahydrobenzothiazole as the structural core. Majority of them exhibited potent inhibitory activities against HDACs and one leading compound 6h was dug out. 6h was proven to be a pan-HDAC inhibitor and displayed high cytotoxicity against seven human cancer cell lines with IC50 values in low micromolar range. 6h could arrest cell cycle in G2/M phase and induce apoptosis in A549 cells. Moreover, compound 6h exhibited remarkable anti-migration and anti-angiogenesis activities. At the same time, 6h was able to elevate the expression of acetylated α-tubulin and acetylated histone H3 in a dose-dependent manner. Docking simulation revealed that 6h fitted well into the active sites of HDAC2 and 6. Finally, compound 6h also exerted potent antitumor effects in an A549 zebrafish xenograft model. Our study demonstrated that compound 6h was a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Simin Sun
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong, China
| | - Wenwen Zhao
- Department of Pharmacology, School of Basic Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Yongliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong, China
| | - Ziwei Chi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong, China
| | - Xixi Fang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Zhiwu Han
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong, China.
| |
Collapse
|
29
|
Dehbandi B, Hossaini Z, Mirjafari Z, Zardoost MR. Ionic liquid promoted green synthesis of new pyridazino benzazepine derivatives: Evaluation of antioxidant activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Behnam Dehbandi
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Zohreh Mirjafari
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | |
Collapse
|
30
|
Medeiros A, Benítez D, Korn RS, Ferreira VC, Barrera E, Carrión F, Pritsch O, Pantano S, Kunick C, de Oliveira CI, Orban OCF, Comini MA. Mechanistic and biological characterisation of novel N5-substituted paullones targeting the biosynthesis of trypanothione in Leishmania. J Enzyme Inhib Med Chem 2020; 35:1345-1358. [PMID: 32588679 PMCID: PMC7717452 DOI: 10.1080/14756366.2020.1780227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Trypanothione synthetase (TryS) produces N1,N8-bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised N5-substituted paullone analogues with anti-TryS activity. Several of the new derivatives retained submicromolar IC50 against leishmanial TryS. The binding mode to TryS of the most potent paullones has been revealed by means of kinetic, biophysical and molecular modelling approaches. A subset of analogues showed an improved potency (EC50 0.5–10 µM) and selectivity (20–35) against the clinically relevant stage of Leishmania braziliensis (mucocutaneous leishmaniasis) and L. infantum (visceral leishmaniasis). For a selected derivative, the mode of action involved intracellular depletion of trypanothione. Our findings shed light on the molecular interaction of TryS with rationally designed inhibitors and disclose a new set of compounds with on-target activity against different Leishmania species.
Collapse
Affiliation(s)
- Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ricarda S Korn
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Exequiel Barrera
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Otto Pritsch
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Oliver C F Orban
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
31
|
Continuous high-pressure operation of a pharmaceutically relevant Krapcho dealkoxycarbonylation reaction. J Flow Chem 2019. [DOI: 10.1007/s41981-019-00031-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Dhandabani GK, Mutra MR, Wang JJ. Palladium-Catalyzed Regioselective Synthesis of 1-Benzoazepine Carbonitriles from o
-Alkynylanilines via 7-endo
-dig Annulation and Cyanation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University, No. 100; Shih-Chuan 1st Rd, Sanmin District Kaohsiung City, 807 Taiwan
| | - Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University, No. 100; Shih-Chuan 1st Rd, Sanmin District Kaohsiung City, 807 Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University, No. 100; Shih-Chuan 1st Rd, Sanmin District Kaohsiung City, 807 Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807 Taiwan
| |
Collapse
|
33
|
Mostafa AS, Bayoumi WA, El-Mesery M, Elgaml A. Molecular Design and Synthesis of New 3,4-Dihydropyrimidin-2(1H)-Ones as Potential Anticancer Agents with VEGFR-2 Inhibiting Activity. Anticancer Agents Med Chem 2018; 19:310-322. [PMID: 30019649 DOI: 10.2174/1871520618666180717125906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Two series of 3,4-dihydropyrimidin-2(1H)-one derivatives were designed based on the main structural features characterizing reported anticancer compounds with potent VEGFR-2 inhibiting activity. METHODS All the target compounds were synthesized and investigated for their in vitro anticancer activity using MTT assay and NCI protocol. The most active compounds were further investigated for the VEGFR-2 inhibiting activity using enzyme inhibition assay. RESULT Of these derivatives, compound 8b possessed significant activity against Caco-2 (IC50 of 24.9 µM) and MCF7 (IC50 of 29.4 µM), compound 10 showed excellent potency against HCT-116 (IC50 of 32.6 µM), HEPG2 (IC50 of 16.4 µM) and MCF7 (IC50 of 32.8 µM), while compound 11b exhibited moderate anticancer activity towards MCF7 (IC50 of 41.7µM). Both 8b and 10 exhibited good potency regarding the inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2), with an IC50 of 14.00 and 21.62 nM, respectively. CONCLUSION The activity was rationalized based on molecular docking study that supported their VEGFR-2 inhibitory activity; as indicated by their favorable binding with the active site.
Collapse
Affiliation(s)
- Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamassa, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
34
|
Rehbein MC, Husmann S, Lechner C, Kunick C, Scholl S. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR. Eur J Pharm Biopharm 2018; 126:95-100. [DOI: 10.1016/j.ejpb.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
|
35
|
The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design. Processes (Basel) 2018. [DOI: 10.3390/pr6040027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the field of chemical engineering, mathematical models have been proven to be an indispensable tool for process analysis, process design, and condition monitoring. To gain the most benefit from model-based approaches, the implemented mathematical models have to be based on sound principles, and they need to be calibrated to the process under study with suitable model parameter estimates. Often, the model parameters identified by experimental data, however, pose severe uncertainties leading to incorrect or biased inferences. This applies in particular in the field of pharmaceutical manufacturing, where usually the measurement data are limited in quantity and quality when analyzing novel active pharmaceutical ingredients. Optimally designed experiments, in turn, aim to increase the quality of the gathered data in the most efficient way. Any improvement in data quality results in more precise parameter estimates and more reliable model candidates. The applied methods for parameter sensitivity analyses and design criteria are crucial for the effectiveness of the optimal experimental design. In this work, different design measures based on global parameter sensitivities are critically compared with state-of-the-art concepts that follow simplifying linearization principles. The efficient implementation of the proposed sensitivity measures is explicitly addressed to be applicable to complex chemical engineering problems of practical relevance. As a case study, the homogeneous synthesis of 3,4-dihydro-1H-1-benzazepine-2,5-dione, a scaffold for the preparation of various protein kinase inhibitors, is analyzed followed by a more complex model of biochemical reactions. In both studies, the model-based optimal experimental design benefits from global parameter sensitivities combined with proper design measures.
Collapse
|
36
|
Zhao Y, Chen JR, Xiao WJ. Visible-Light Photocatalytic Decarboxylative Alkyl Radical Addition Cascade for Synthesis of Benzazepine Derivatives. Org Lett 2017; 20:224-227. [DOI: 10.1021/acs.orglett.7b03588] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Zhao
- Hubei
International Scientific and Technological Cooperation Base of Pesticide
and Green Synthesis, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jia-Rong Chen
- Hubei
International Scientific and Technological Cooperation Base of Pesticide
and Green Synthesis, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Wen-Jing Xiao
- Hubei
International Scientific and Technological Cooperation Base of Pesticide
and Green Synthesis, Key Laboratory of Pesticides and Chemical Biology,
Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Li Y, Hu M, Li JH. Silver-Catalyzed Intermolecular [3 + 2]/[5 + 2] Annulation of N-Arylpropiolamides with Vinyl Acids: Facile Synthesis of Fused 2H-Benzo[b]azepin-2-ones. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02061] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ming Hu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
38
|
Thireau J, Schneider C, Baudequin C, Gaurrand S, Angibaud P, Meerpoel L, Levacher V, Querolle O, Hoarau C. Chemoselective Palladium-Catalyzed Direct C-H Arylation of 5-Carboxyimidazoles: Unparalleled Access to Fused Imidazole-Based Tricycles Containing Six-, Seven- or Eight-Membered Rings. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérémy Thireau
- Normandie University; COBRA; UMR 6014 et FR 3038; University Rouen; INSA Rouen; CNRS, IRCOF; 1 rue Tesnière 76821 Mont-Saint-Aignan Cedex France
| | - Cédric Schneider
- Normandie University; COBRA; UMR 6014 et FR 3038; University Rouen; INSA Rouen; CNRS, IRCOF; 1 rue Tesnière 76821 Mont-Saint-Aignan Cedex France
| | - Christine Baudequin
- Normandie University; COBRA; UMR 6014 et FR 3038; University Rouen; INSA Rouen; CNRS, IRCOF; 1 rue Tesnière 76821 Mont-Saint-Aignan Cedex France
| | - Sandrine Gaurrand
- Janssen Research & Development; Division of Janssen-Cilag S.A.; Campus de Maigremont, BP615 27106 Val de Reuil Cedex France
| | - Patrick Angibaud
- Janssen Research & Development; Division of Janssen-Cilag S.A.; Campus de Maigremont, BP615 27106 Val de Reuil Cedex France
| | - Lieven Meerpoel
- Janssen Research & Development; Division of Janssen; Pharmaceutica NV; Turnhoutseweg 30 2340 Beerse Belgium
| | - Vincent Levacher
- Normandie University; COBRA; UMR 6014 et FR 3038; University Rouen; INSA Rouen; CNRS, IRCOF; 1 rue Tesnière 76821 Mont-Saint-Aignan Cedex France
| | - Olivier Querolle
- Janssen Research & Development; Division of Janssen-Cilag S.A.; Campus de Maigremont, BP615 27106 Val de Reuil Cedex France
| | - Christophe Hoarau
- Normandie University; COBRA; UMR 6014 et FR 3038; University Rouen; INSA Rouen; CNRS, IRCOF; 1 rue Tesnière 76821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
39
|
5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg Med Chem 2016; 24:3790-800. [DOI: 10.1016/j.bmc.2016.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 01/31/2023]
|
40
|
Psarra V, Fousteris MA, Hennig L, Bantzi M, Giannis A, Nikolaropoulos SS. Identification of azepinone fused tetracyclic heterocycles as new chemotypes with protein kinase inhibitory activities. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
42
|
|
43
|
|
44
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
45
|
Denis JG, Franci G, Altucci L, Aurrecoechea JM, de Lera ÁR, Álvarez R. Synthesis of 7-alkylidene-7,12-dihydroindolo[3,2-d]benzazepine-6-(5H)-ones (7-alkylidene-paullones) by N-cyclization–oxidative Heck cascade and characterization as sirtuin modulators. Org Biomol Chem 2015; 13:2800-10. [DOI: 10.1039/c4ob02493a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-induced cascade of N-cyclization and oxidative Heck reaction of o-alkynylanilines produced 7-alkylidene-indolobenzazepinones (paullones) that have sirtuin modulation activities.
Collapse
Affiliation(s)
- J. G. Denis
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - G. Franci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - L. Altucci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - J. M. Aurrecoechea
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco
- 48080 Bilbao
- Spain
| | - Á. R. de Lera
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - R. Álvarez
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| |
Collapse
|
46
|
Liu W, Liu C, Zhang Y, Sun Y, Abdukadera A, Wang B, Li H, Ma X, Zhang Z. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp3 C–N bond formation under metal-free conditions. Org Biomol Chem 2015; 13:7154-8. [DOI: 10.1039/c5ob00781j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp3 C–H bonds via intermolecular sp3 C–N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Yonghong Zhang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Yadong Sun
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Ablimit Abdukadera
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Bin Wang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - He Li
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Xuecheng Ma
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| | - Zengpeng Zhang
- The Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology
- School of Chemistry and Chemical Engineering
- Physics and Chemistry Detecting Center
| |
Collapse
|
47
|
Maiwald F, Benítez D, Charquero D, Dar MA, Erdmann H, Preu L, Koch O, Hölscher C, Loaëc N, Meijer L, Comini MA, Kunick C. 9- and 11-Substituted 4-azapaullones are potent and selective inhibitors of African trypanosoma. Eur J Med Chem 2014; 83:274-83. [PMID: 24973661 DOI: 10.1016/j.ejmech.2014.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Trypanosomes from the "brucei" complex are pathogenic parasites endemic in sub-Saharan Africa and causative agents of severe diseases in humans and livestock. In order to identify new antitrypanosomal chemotypes against African trypanosomes, 4-azapaullones carrying α,β-unsaturated carbonyl chains in 9- or 11-position were synthesized employing a procedure with a Heck reaction as key step. Among the so prepared compounds, 5a and 5e proved to be potent antiparasitic agents with antitrypanosomal activity in the submicromolar range.
Collapse
Affiliation(s)
- Franziska Maiwald
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Diego Charquero
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mahin Abad Dar
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Hanna Erdmann
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Lutz Preu
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Oliver Koch
- Technische Universität Dortmund, Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Christoph Hölscher
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany.
| |
Collapse
|
48
|
Cozza G, Zanin S, Determann R, Ruzzene M, Kunick C, Pinna LA. Synthesis and properties of a selective inhibitor of homeodomain-interacting protein kinase 2 (HIPK2). PLoS One 2014; 9:e89176. [PMID: 24586573 PMCID: PMC3933419 DOI: 10.1371/journal.pone.0089176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a Ser/Thr kinase controlling cell proliferation and survival, whose investigation has been hampered by the lack of specific inhibitors able to dissect its cellular functions. SB203580, a p38 MAP kinase inhibitor, has been used as a tool to inhibit HIPK2 in cells, but here we show that its efficacy as HIPK2 inhibitor is negligible (IC50>40 µM). In contrast by altering the scaffold of the promiscuous CK2 inhibitor TBI a new class of HIPK2 inhibitors has been generated. One of these, TBID, displays toward HIPK2 unprecedented efficacy (IC50 = 0.33 µM) and selectivity (Gini coefficient 0.592 out of a panel of 76 kinases). The two other members of the HIPK family, HIPK1 and HIPK3, are also inhibited by TBID albeit less efficiently than HIPK2. The mode of action of TBID is competitive with respect to ATP, consistent with modelling. We also provide evidence that TBID is cell permeable by showing that HIPK2 activity is reduced in cells treated with TBID, although with an IC50 two orders of magnitude higher (about 50 µM) than in vitro.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Sofia Zanin
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Renate Determann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- * E-mail:
| |
Collapse
|
49
|
Luo L, Meng L, Sun Q, Ge Z, Li R. Novel synthesis of thiazolo/thienoazepine-5,8-diones from dihalo cyclic 1,3-diketones and mercaptonitrile salts. RSC Adv 2014. [DOI: 10.1039/c3ra46606j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient approach to thiazolo[4,5-b]azepine-5,8-diones and thieno[3,2-b]azepine-5,8-diones has been developed via a domino synthesis of multifunctionalized thiazoles/thiophenes and further intramolecular cyclization.
Collapse
Affiliation(s)
- Laichun Luo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Lanlan Meng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| |
Collapse
|
50
|
Ryczak J, Papini M, Lader A, Nasereddin A, Kopelyanskiy D, Preu L, Jaffe CL, Kunick C. 2-Arylpaullones are selective antitrypanosomal agents. Eur J Med Chem 2013; 64:396-400. [PMID: 23648975 DOI: 10.1016/j.ejmech.2013.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Antileishmanial paullone-chalcone hybrid molecules display antiparasitic activity against Trypanosoma brucei rhodesiense blood stream forms, albeit with low selectivity against human THP-1 cells. In order to develop less toxic analogues, paullones with acrylamide or aryl substituents in 2-position were synthesized, of which the latter exhibited potent antiparasitic activity with excellent selectivity profiles. The most potent compound identified in this study was 9-tert-butyl-2-(4-morpholinophenyl)paullone (3i) which inhibited the parasites at submicromolar concentrations (GI50 = 510 nM) with a selectivity index of 157.
Collapse
Affiliation(s)
- Jasmin Ryczak
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|