1
|
Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers. Int J Mol Sci 2019; 20:ijms20205027. [PMID: 31614426 PMCID: PMC6829278 DOI: 10.3390/ijms20205027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevance of GnRH-R targeting in HNSCC patients. Our results indicate that half of the patient-derived samples showed high GnRH-R expression, which was associated with worse prognosis, making this receptor a promising target for GnRH-based drug delivery. Photodynamic therapy is a clinically approved treatment for HNSCC, and the efficacy and selectivity may be enhanced by the covalent conjugation of the photosensitizer to a GnRH-R targeting peptide. Several native ligands, gonadotropin-releasing hormone (GnRH) isoforms, are known to target GnRH-R effectively. Therefore, different 4Lys(Bu) modified GnRH analogs were designed and conjugated to protoporphyrin IX. The receptor binding potency of the novel conjugates was measured on human pituitary and human prostate cancer cells, indicating only slightly lower GnRH-R affinity than the peptides. The in vitro cell viability inhibition was tested on Detroit-562 human pharyngeal carcinoma cells that express GnRH-R in high levels, and the results showed that all conjugates were more effective than the free protoporphyrin IX.
Collapse
|
2
|
Ranđelović I, Schuster S, Kapuvári B, Fossati G, Steinkühler C, Mező G, Tóvári J. Improved In Vivo Anti-Tumor and Anti-Metastatic Effect of GnRH-III-Daunorubicin Analogs on Colorectal and Breast Carcinoma Bearing Mice. Int J Mol Sci 2019; 20:E4763. [PMID: 31557968 PMCID: PMC6801585 DOI: 10.3390/ijms20194763] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.
Collapse
Affiliation(s)
- Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bence Kapuvári
- Department of Biochemistry, National Institute of Oncology, 1122 Budapest, Hungary.
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco SpA, 20092 Cinisello Balsamo (Milan), Italy.
| | | | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary.
| |
Collapse
|
3
|
Schuster S, Biri-Kovács B, Szeder B, Buday L, Gardi J, Szabó Z, Halmos G, Mező G. Enhanced In Vitro Antitumor Activity of GnRH-III-Daunorubicin Bioconjugates Influenced by Sequence Modification. Pharmaceutics 2018; 10:E223. [PMID: 30423956 PMCID: PMC6320914 DOI: 10.3390/pharmaceutics10040223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Receptors for gonadotropin releasing hormone (GnRH) are highly expressed in various human cancers including breast, ovarian, endometrial, prostate and colorectal cancer. Ligands like human GnRH-I or the sea lamprey analogue GnRH-III represent a promising approach for the development of efficient drug delivery systems for targeted tumor therapy. Here, we report on the synthesis and cytostatic effect of 14 oxime bond-linked daunorubicin GnRH-III conjugates containing a variety of unnatural amino acids within the peptide sequence. All compounds demonstrated a reduced cell viability in vitro on estrogen receptor α (ERα) positive and ERα negative cancer cells. The best candidate revealed an increased cancer cell growth inhibitory effect compared to our lead-compound GnRH-III-[⁴Lys(Bu),⁸Lys(Dau=Aoa)]. Flow cytometry and fluorescence microscopy studies showed that the cellular uptake of the novel conjugate is substantially improved leading to an accelerated delivery of the drug to its site of action. However, the release of the active drug-metabolite by lysosomal enzymes was not negatively affected by amino acid substitution, while the compound provided a high stability in human blood plasma. Receptor binding studies were carried out to ensure a high binding affinity of the new compound for the GnRH-receptor. It was demonstrated that GnRH-III-[²ΔHis,³d-Tic,⁴Lys(Bu),⁸Lys(Dau=Aoa)] is a highly potent and promising anticancer drug delivery system for targeted tumor therapy.
Collapse
Affiliation(s)
- Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Beáta Biri-Kovács
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - János Gardi
- First Department of Internal Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| |
Collapse
|
4
|
Polgár L, Lajkó E, Soós P, Láng O, Manea M, Merkely B, Mező G, Kőhidai L. Drug targeting to decrease cardiotoxicity - determination of the cytotoxic effect of GnRH-based conjugates containing doxorubicin, daunorubicin and methotrexate on human cardiomyocytes and endothelial cells. Beilstein J Org Chem 2018; 14:1583-1594. [PMID: 30013686 PMCID: PMC6037002 DOI: 10.3762/bjoc.14.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Cardiomyopathy induced by the chemotherapeutic agents doxorubicin and daunorubicin is a major limiting factor for their application in cancer therapy. Chemotactic drug targeting potentially increases the tumor selectivity of drugs and decreases their cardiotoxicity. Increased expression of gonadotropin-releasing hormone (GnRH) receptors on the surface of tumor cells has been reported. Thus, the attachment of the aforementioned chemotherapeutic drugs to GnRH-based peptides may result in compounds with increased therapeutic efficacy. The objective of the present study was to examine the cytotoxic effect of anticancer drug–GnRH-conjugates against two essential cardiovascular cell types, such as cardiomyocytes and endothelial cells. Sixteen different previously developed GnRH-conjugates containing doxorubicin, daunorubicin and methotrexate were investigated in this study. Their cytotoxicity was determined on primary human cardiac myocytes (HCM) and human umbilical vein endothelial cells (HUVEC) using the xCELLigence SP system, which measures impedance changes caused by adhering cells on golden electrode arrays placed at the bottom of the wells. Slopes of impedance–time curves were calculated and for the quantitative determination of cytotoxicity, the difference to the control was analysed. Results: Doxorubicin and daunorubicin exhibited a cytotoxic effect on both cell types, at the highest concentrations tested. Doxorubicin-based conjugates (AN-152, GnRH-III(Dox-O-glut), GnRH-III(Dox-glut-GFLG) and GnRH-III(Dox=Aoa-GFLG) showed the same cytotoxic effect on cardiomyocytes. Among the daunorubicin-based conjugates, [4Lys(Ac)]-GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-YRRL), {GnRH-III(Dau=Aoa-YRRL-C)}2 and {[4N-MeSer]-GnRH-III(Dau-C)}2 had a significant but decreased cytotoxic effect, while the other conjugates – GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-K(Dau=Aoa)), [4Lys(Dau=Aoa)]-GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-GFLG), {GnRH-III(Dau-C)}2 and [4N-MeSer]-GnRH-III(Dau=Aoa) – exerted no cytotoxic effect on cardiomyocytes. Mixed conjugates containing methotrexate and daunorubicin – GnRH-III(Mtx-K(Dau=Aoa)) and [4Lys(Mtx)]-GnRH-III(Dau=Aoa) – showed no cytotoxic effect on cardiomyocytes, as well. Conclusion: Based on these results, anticancer drug–GnRH-based conjugates with no cytotoxic effect on cardiomyocytes were identified. In the future, these compounds could provide a more targeted antitumor therapy with no cardiotoxic adverse effects. Moreover, impedimetric cytotoxicity analysis could be a valuable technique to determine the effect of drugs on cardiomyocytes.
Collapse
Affiliation(s)
- Livia Polgár
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary.,Chemotaxis Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Eszter Lajkó
- Chemotaxis Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Pál Soós
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary
| | - Orsolya Láng
- Chemotaxis Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| | - Marilena Manea
- University of Konstanz, Department of Chemistry and Zukunftskolleg, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68., Budapest, 1122, Hungary
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány P. stny 1/A Budapest, 1117, Hungary.,MTA-ELTE Research Group of Peptide Chemistry, Pázmány P. stny 1/A, Hungarian Academy of Science, Budapest, 1117, Hungary
| | - László Kőhidai
- Chemotaxis Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary
| |
Collapse
|
5
|
Validation of an NMR-Spectroscopic Method for Authenticity Confirmation of Buserelin Acetate Pharmaceutical Substance. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1783-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem 2018; 14:930-954. [PMID: 29765474 PMCID: PMC5942387 DOI: 10.3762/bjoc.14.80] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide–drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.
Collapse
Affiliation(s)
- Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| |
Collapse
|
7
|
Murányi J, Gyulavári P, Varga A, Bökönyi G, Tanai H, Vántus T, Pap D, Ludányi K, Mező G, Kéri G. Synthesis, characterization and systematic comparison of FITC-labelled GnRH-I, -II and -III analogues on various tumour cells. J Pept Sci 2017; 22:552-60. [PMID: 27443981 DOI: 10.1002/psc.2904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/05/2022]
Abstract
Targeted tumour therapy is the focus of recent cancer research. Gonadotropin-releasing hormone (GnRH) analogues are able to deliver anticancer agents selectively into tumour cells, which highly express GnRH receptors. However, the effectiveness of different analogues as targeting moiety in drug delivery systems is rarely compared, and the investigated types of cancer are also limited. Therefore, we prepared selectively labelled, fluorescent derivatives of GnRH-I, -II and -III analogues, which were successfully used for drug targeting. In this manuscript, we investigated these analogues' solubility, stability and passive membrane permeability and compared their cellular uptake by various cancer cells. We found that these labelled GnRH conjugates provide great detectability, without undesired cytotoxicity and passive membrane permeability. The introduced experiments with these conjugates proved their reliable tracking, quantification and comparison. Cellular uptake efficiency was studied on human breast, colon, pancreas and prostate cancer cells (MCF-7, HT-29, BxPC-3, LNCaP) and on dog kidney cells (Madin-Darby canine kidney). Each of the three conjugates was taken up by GnRH-I receptor-expressing cells, but the different cells preferred different analogues. Furthermore, we demonstrated for the first time the high cell surface expression of GnRH-I receptors and the effective cellular uptake of GnRH analogues on human pharynx tumour (Detroit-562) cells. In summary, our presented results detail that the introduced conjugates could be innovative tools for the examination of the GnRH-based drug delivery systems on various cells and offer novel information about these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- József Murányi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Pál Gyulavári
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Attila Varga
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Györgyi Bökönyi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Henriette Tanai
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Tibor Vántus
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| | - Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, Bókay János St. 53-54, H1083, Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre St. 7, H1092, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Pázmány Péter sétány 1/A, H1518, Budapest, Hungary
| | - György Kéri
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094, Budapest, Hungary.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó St. 37-47, H1094, Budapest, Hungary
| |
Collapse
|
8
|
Hegedüs R, Pauschert A, Orbán E, Szabó I, Andreu D, Marquardt A, Mező G, Manea M. Modification of daunorubicin-GnRH-III bioconjugates with oligoethylene glycol derivatives to improve solubility and bioavailability for targeted cancer chemotherapy. Biopolymers 2016; 104:167-77. [PMID: 25753049 DOI: 10.1002/bip.22629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Daunorubicin-GnRH-III bioconjugates have recently been developed as drug delivery systems with potential applications in targeted cancer chemotherapy. In order to improve their biochemical properties, several strategies have been pursued: (1) incorporation of an enzymatic cleavable spacer between the anticancer drug and the peptide-based targeting moiety, (2) peptide modification by short chain fatty acids, or (3) attachment of two anticancer drugs to the same GnRH-III derivative. Although these modifications led to more potent bioconjugates, a decrease in their solubility was observed. Here we report on the design, synthesis and biochemical characterization of daunorubicin-GnRH-III bioconjugates with increased solubility, which could be achieved by incorporating oligoethylene glycol-based spacers in their structure. First, we have evaluated the effect of an oligoethylene glycol-based spacer on the solubility, enzymatic stability/degradation, cellular uptake, and in vitro cytostatic effect of a bioconjugate containing only one daunorubicin attached through a GFLG tetrapeptide spacer to the GnRH-III targeting moiety. Thereafter, more complex compounds containing two copies of daunorubicin, GFLG spacers as well as Lys(nBu) in position 4 of GnRH-III were synthesized and biochemically characterized. Our results indicated that all synthesized oligoethylene glycol-containing bioconjugates had higher solubility in cell culture medium than the unmodified analogs. They were degraded in the presence of rat liver lysosomal homogenate leading to the formation of small drug containing metabolites. In the case of bioconjugates containing two copies of daunorubicin, the incorporation of oligoethylene glycol-based spacers led to increased in vitro cytostatic effect on MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Rózsa Hegedüs
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Aline Pauschert
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Erika Orbán
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Andreas Marquardt
- Proteomics Facility, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Marilena Manea
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
9
|
Kapuvári B, Hegedüs R, Schulcz Á, Manea M, Tóvári J, Gacs A, Vincze B, Mező G. Improved in vivo antitumor effect of a daunorubicin - GnRH-III bioconjugate modified by apoptosis inducing agent butyric acid on colorectal carcinoma bearing mice. Invest New Drugs 2016; 34:416-23. [PMID: 27146514 PMCID: PMC4919375 DOI: 10.1007/s10637-016-0354-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/12/2016] [Indexed: 12/01/2022]
Abstract
Compared to classical chemotherapy, peptide-based drug targeting is a promising therapeutic approach for cancer, which can provide increased selectivity and decreased side effects to anticancer drugs. Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety, in particular in the treatment of hormone independent tumors that highly express GnRH receptors (e.g. colon carcinoma). We have previously shown that GnRH-III[4Lys(Ac),8Lys(Dau = Aoa)] bioconjugate, in which daunorubicin was attached via oxime linkage to the 8Lys of a GnRH-III derivative, exerted significant in vivo antitumor effect on subcutaneously developed HT-29 colon tumor. In contrast, results of the study reported here indicated that this compound was not active on an orthotopically developed tumor. However, if Lys in position 4 was acylated with butyric acid instead of acetic acid, the resulting bioconjugate GnRH-III[4Lys(Bu),8Lys(Dau = Aoa)] had significant tumor growth inhibitory effect. Furthermore, it prevented tumor neovascularization, without detectable side effects. Nevertheless, the development of metastases could not be inhibited by the bioconjugate; therefore, its application in combination with a metastasis preventive agent might be necessary in order to achieve complete tumor remission. In spite of this result, the treatment with GnRH-III[4Lys(Bu),8Lys(Dau = Aoa)] bioconjugate proved to have significant benefits over the administration of free daunorubicin, which was used at the maximum tolerated dose.
Collapse
Affiliation(s)
| | - Rózsa Hegedüs
- MTA-ELTE, Research Group of Peptide Chemistry, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Ákos Schulcz
- National Institute of Oncology, Budapest, 1122, Hungary
| | - Marilena Manea
- Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457, Constance, Germany
| | - József Tóvári
- National Institute of Oncology, Budapest, 1122, Hungary
| | | | | | - Gábor Mező
- MTA-ELTE, Research Group of Peptide Chemistry, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
10
|
Limonta P, Manea M. Gonadotropin-releasing hormone receptors as molecular therapeutic targets in prostate cancer: Current options and emerging strategies. Cancer Treat Rev 2013; 39:647-63. [DOI: 10.1016/j.ctrv.2012.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
|
11
|
Pappa EV, Zompra AA, Diamantopoulou Z, Spyranti Z, Pairas G, Lamari FN, Katsoris P, Spyroulias GA, Cordopatis P. Structure-activity studies of lGnRH-III through rational amino acid substitution and NMR conformational studies. Biopolymers 2013. [PMID: 23203758 DOI: 10.1002/bip.22123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lamprey gonadotropin-releasing hormone type III (lGnRH-III) is an isoform of GnRH isolated from the sea lamprey (Petromyzon marinus) with negligible endocrine activity in mammalian systems. Data concerning the superior direct anticancer activity of lGnRH-III have been published, raising questions on the structure-activity relationship. We synthesized 21 lGnRH-III analogs with rational amino acid substitutions and studied their effect on PC3 and LNCaP prostate cancer cell proliferation. Our results question the importance of the acidic charge of Asp⁶ for the antiproliferative activity and indicate the significance of the stereochemistry of Trp in positions 3 and 7. Furthermore, conjugation of an acetyl-group to the side chain of Lys⁸ or side chain cyclization of amino acids 1-8 increased the antiproliferative activity of lGnRH-III demonstrating that the proposed salt bridge between Asp⁶ and Lys⁸ is not crucial. Conformational studies of lGnRH-III were performed through NMR spectroscopy, and the solution structure of GnRH-I was solved. In solution, lGnRH-III adopts an extended backbone conformation in contrast to the well-defined β-turn conformation of GnRH-I.
Collapse
Affiliation(s)
- Eleni V Pappa
- Department of Pharmacy, University of Patras, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lajkó E, Szabó I, Andódy K, Pungor A, Mező G, Kőhidai L. Investigation on chemotactic drug targeting (chemotaxis and adhesion) inducer effect of GnRH-III derivatives in Tetrahymena and human leukemia cell line. J Pept Sci 2012. [PMID: 23208929 DOI: 10.1002/psc.2472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GnRH-III has been shown to exert a cytotoxic effect on the GnRH-R positive tumor cells. The chemotactic drug targeting (CDT) represents a new way for drug delivery approach based on selective chemoattractant guided targeting. The major goal of the present work was to develop and investigate various GnRH-III derivatives as potential targeting moieties for CDT. The cell physiological effects (chemotaxis, adhesion, and signaling) induced by three native GnRHs (hGnRH-I, cGnRH-II, and lGnRH-III) and nine GnRH-III derivatives were evaluated in two model cells (Tetrahymena pyriformis and Mono Mac 6 human monocytes). According to our results, the native GnRH-III elicited the highest chemoattractant and adhesion inducer activities of all synthesized peptides in micromolar concentrations in monocytes. With respect to chemoattraction, dimeric derivatives linked by a disulfide bridge ([GnRH-III(C)](2) ) proved to be efficient in both model cells; furthermore, acetylation of the linker region ([GnRH-III(Ac-C)](2) ) could slightly improve the chemotactic and adhesion effects in monocytes. The length of the peptide and the type of N-terminal amino acid could also determine the chemotactic and adhesion modulation potency of each fragment. The application of the chemoattractant GnRH-III derivatives was accompanied by a significant activation of phosphatidylinositol 3-kinase in both model cells. In summary, our work on low-level differentiated model cells of tumors has proved that GnRH-III and some of its synthetic derivatives are promising candidates to be applied in CDT: these compounds might act both as carrier, delivery unit, and antitumor agents.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics Cell and Immunobiology, Semmelweis University, Nagyvárad tér. 4, H-1089, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
13
|
Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem 2012; 56:155-65. [PMID: 22967796 DOI: 10.1016/j.ejmech.2012.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/13/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors.
Collapse
|
14
|
In-vivo antitumour effect of daunorubicin–GnRH-III derivative conjugates on colon carcinoma-bearing mice. Anticancer Drugs 2012; 23:90-7. [DOI: 10.1097/cad.0b013e32834bb6b4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Schlage P, Mező G, Orbán E, Bősze S, Manea M. Anthracycline-GnRH derivative bioconjugates with different linkages: Synthesis, in vitro drug release and cytostatic effect. J Control Release 2011; 156:170-8. [DOI: 10.1016/j.jconrel.2011.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 01/13/2023]
|
16
|
Manea M, Leurs U, Orbán E, Baranyai Z, Öhlschläger P, Marquardt A, Schulcz Á, Tejeda M, Kapuvári B, Tóvári J, Mező G. Enhanced Enzymatic Stability and Antitumor Activity of Daunorubicin-GnRH-III Bioconjugates Modified in Position 4. Bioconjug Chem 2011; 22:1320-9. [DOI: 10.1021/bc100547p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marilena Manea
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry
- Zukunftskolleg
| | - Ulrike Leurs
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry
| | - Erika Orbán
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Baranyai
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | | | - Ákos Schulcz
- National Institute of Oncology, 1122 Budapest, Hungary
| | - Miguel Tejeda
- National Institute of Oncology, 1122 Budapest, Hungary
| | | | - József Tóvári
- National Institute of Oncology, 1122 Budapest, Hungary
| | - Gábor Mező
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
17
|
Leurs U, Mező G, Orbán E, Öhlschläger P, Marquardt A, Manea M. Design, synthesis, in vitro stability and cytostatic effect of multifunctional anticancer drug-bioconjugates containing GnRH-III as a targeting moiety. Biopolymers 2011; 98:1-10. [PMID: 21509746 DOI: 10.1002/bip.21640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 11/09/2022]
Abstract
Bioconjugates containing the GnRH-III hormone decapeptide as a targeting moiety are able to deliver chemotherapeutic agents specifically to cancer cells expressing GnRH receptors, thereby increasing their local efficacy while limiting the peripheral toxicity. However, the number of GnRH receptors on cancer cells is limited and they desensitize under continuous hormone treatment. A possible approach to increase the receptor mediated tumor targeting and consequently the cytostatic effect of the bioconjugates would be the attachment of more than one chemotherapeutic agent to one GnRH-III molecule. Here we report on the design, synthesis and biochemical characterization of multifunctional bioconjugates containing GnRH-III as a targeting moiety and daunorubicin as a chemotherapeutic agent. Two different drug design approaches were pursued. The first one was based on the bifunctional [(4)Lys]-GnRH-III (Glp-His-Trp-Lys-His-Asp-Trp-Lys-Pro-Gly-NH(2)) containing two lysine residues in positions 4 and 8, whose ε-amino groups were used for the coupling of daunorubicin. In the second drug design, the native GnRH-III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was used as a scaffold; an additional lysine residue was coupled to the ϵ-amino group of (8) Lys in order to generate two free amino groups available for conjugation of daunorubicin. The in vitro stability/degradation of all synthesized compounds was investigated in human serum, as well as in the presence of rat liver lysosomal homogenate. Their cellular uptake was determined on human breast cancer cells and the cytostatic effect was evaluated on human breast, colon and prostate cancer cell lines. Compared with a monofunctional compound, both drug design approaches resulted in multifunctional bioconjugates with increased cytostatic effect.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
18
|
In vitro degradation and antitumor activity of oxime bond-linked daunorubicin-GnRH-III bioconjugates and DNA-binding properties of daunorubicin-amino acid metabolites. Amino Acids 2010; 41:469-83. [PMID: 20953647 DOI: 10.1007/s00726-010-0766-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
Collapse
|
19
|
To protect peptide pharmaceuticals against peptidases. J Pharmacol Toxicol Methods 2010; 61:210-8. [DOI: 10.1016/j.vascn.2010.02.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/18/2022]
|
20
|
Szabó I, Manea M, Orbán E, Csámpai A, Bosze S, Szabó R, Tejeda M, Gaál D, Kapuvári B, Przybylski M, Hudecz F, Mezo G. Development of an oxime bond containing daunorubicin-gonadotropin-releasing hormone-III conjugate as a potential anticancer drug. Bioconjug Chem 2009; 20:656-65. [PMID: 19296605 DOI: 10.1021/bc800542u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report on the synthesis and biological properties of a conjugate in which daunorubicin (Dau) as chemotherapeutic agent was attached through an oxime bond to gonadotropin-releasing hormone-III (GnRH-III) as targeting moiety. In vitro toxicity and the cytostatic effect of the conjugate on MCF-7 human breast and C26 murine colon cancer cell lines were determined, and the results were compared with those obtained for the free daunorubicin, as well as with the doxorubicin containing derivative. In vivo antitumor effect of daunorubicin-GnRH-III was studied on Balb/c female mice transplanted with C26 tumor. Our data indicate that the daunorubicin-GnRH-III conjugate had a lower toxic effect than the free daunorubicin and it was essentially nontoxic up to 15 mg (Dau content)/kg body weight. The treatment of the C26 tumor bearing mice with the conjugate led to tumor growth inhibition and longer survival time in comparison with the controls and with the administration of the free drug. When mice were treated twice with the conjugate (on days 4 and 7 after tumor transplantation), 46% tumor growth inhibition was obtained. In this case, the increase of the median survival time was 38% compared to the controls.
Collapse
Affiliation(s)
- Ildikó Szabó
- Hungarian Academy of Sciences, and Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mezo G, Czajlik A, Manea M, Jakab A, Farkas V, Majer Z, Vass E, Bodor A, Kapuvári B, Boldizsár M, Vincze B, Csuka O, Kovács M, Przybylski M, Perczel A, Hudecz F. Structure, enzymatic stability and antitumor activity of sea lamprey GnRH-III and its dimer derivatives. Peptides 2007; 28:806-20. [PMID: 17254668 DOI: 10.1016/j.peptides.2006.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/24/2022]
Abstract
Direct antitumor activity of sea lamprey (Petromyzon marinus) gonadotropin-releasing hormone III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2); lGnRH-III) was described on several tumor cells. To improve the selectivity of antitumor effects without increasing the hormone releasing activity and to enhance the enzymatic stability, lGnRH-III dimers were prepared via disulfide bond formation. Our results demonstrate that the lGnRH-III dimer derivatives exhibited higher antiproliferative effect and enzymatic stability in comparison with the native lGnRH-III, while lower LH-releasing potency was determined. In order to find a correlation between the biological and structural features of these compounds, the conformation of lGnRH-III and its dimer derivatives was determined by ECD, VCD, FT-IR and (1)H NMR.
Collapse
Affiliation(s)
- Gábor Mezo
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, POB 32, 1518 Budapest 112, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kovács M, Vincze B, Horváth JE, Seprodi J. Structure-activity study on the LH- and FSH-releasing and anticancer effects of gonadotropin-releasing hormone (GnRH)-III analogs. Peptides 2007; 28:821-9. [PMID: 17289216 DOI: 10.1016/j.peptides.2007.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/29/2006] [Accepted: 01/05/2007] [Indexed: 11/25/2022]
Abstract
UNLABELLED GnRH-III was reported to have selective FSH-releasing activity in rats and significant anticancer potency on human breast cancer cells. To improve either of these effects, 14 analogs were synthesized and investigated for FSH/LH stimulation and breast cancer inhibition. Analogs with single amino acid changes in positions 5-7 or 10 showed small or no difference in the FSH- or LH-releasing activity compared with GnRH-III but their anticancer potency decreased significantly. Modification of the terminal amino acids, side chain cyclization at the 6-8 regions, or combined amino acid changes at positions 4, 6 and/or 8 resulted in the decrease of both effects. Gonadotropin-releasing activity of Arg(8)-GnRH-III was improved 3-11-fold. A copolymer conjugate of GnRH-III showed 2-3-fold anticancer activity while losing endocrine potency. CONCLUSION The activation of GnRH-receptors on pituitary and breast cancer cells requires a specific structure and/or conformation that makes possible to improve the anticancer selectivity of GnRH analogs.
Collapse
Affiliation(s)
- Magdolna Kovács
- University of Pécs, Medical School, Department of Anatomy, Szigeti Str. 12, Pécs 7624, Hungary.
| | | | | | | |
Collapse
|
23
|
|
24
|
Herédi-Szabó K, Lubke J, Toth G, Murphy RF, Lovas S. Importance of the central region of lamprey gonadotropin-releasing hormone III in the inhibition of breast cancer cell growth. Peptides 2005; 26:419-22. [PMID: 15652648 DOI: 10.1016/j.peptides.2004.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
Naturally occurring isoforms of the decapeptide gonadotropin-releasing hormone (GnRH) share residues 1-4 and 9-10. lGnRH-III, the third isoform isolated in the sea lamprey has no endocrine effect in mammals but shows a direct antiproliferative effect on human breast, prostate and endometrial cancer cell lines. To investigate these features, residues 5-8 of lGnRH-III were systematically replaced with Ala. The ability of the synthetic analogs to interact with receptors on MDA-MB 231 human breast cancer cells and their effect on the growth of the same cell line were investigated. [Ala6]lGnRH-III and [Ala7]lGnRH-III have neither receptor binding nor antiproliferative activity. Replacement of His5 with Ala resulted in an analog that binds to the receptor but does not have antiproliferative activity. The results are in agreement with previous reports that modifications of Lys at position 8 are well tolerated.
Collapse
Affiliation(s)
- Krisztina Herédi-Szabó
- Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178-0405, USA
| | | | | | | | | |
Collapse
|
25
|
Mezö G, Manea M, Jakab A, Kapuvári B, Bösze S, Schlosser G, Przybylski M, Hudecz F. Synthesis and structural characterization of bioactive peptide conjugates using thioether linkage approaches. J Pept Sci 2004; 10:701-13. [PMID: 15635622 DOI: 10.1002/psc.583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Applications of cysteine-insertion and thioether linkage approaches to the preparation of a number of bioactive peptide conjugates are reported. Peptides containing epitopes from (i) herpes simplex virus type 1 glycoprotein D, (ii) a specific N-terminal beta-amyloid epitope recognized by therapeutically active antibodies, and (iii) a GnRH-III peptide from sea lamprey with antitumour activity, were elongated with Cys residues and attached to a chloroacetylated tetratuftsin derivative carrier via a thioether linkage either directly, or by insertion of a spacer. The structures and molecular homogeneity of all the peptide conjugates were ascertained by HPLC, MALDI and electrospray mass spectrometry. The use of a spacer such as an oligoglycine or GFLG-tetrapeptide gave an increased yield in the conjugation reaction and enhanced reaction rates. In the formation of cysteinyl-thioether linkages, it was found that the position of flanking Cys residues markedly influenced the conjugation reaction and the formation of intermolecular epitope disulfide-dimers. C-terminal Cys residues gave thioether conjugates with significantly diminished epitope-dimerization, while Cys at the N-terminal caused rapid disulfide-dimerization, thereby preventing efficient conjugation.
Collapse
Affiliation(s)
- Gábor Mezö
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kálnay A, Pályi I, Vincze B, Mihalik R, Mezõ I, Pató J, Seprõdi J, Lovas S, Murphy RF. Influence on antiproliferative activity of structural modification and conjugation of gonadotropin-releasing hormone (GnRH) analogues. Cell Prolif 2001; 33:275-85. [PMID: 11063130 PMCID: PMC6496190 DOI: 10.1046/j.1365-2184.2000.00180.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of various GnRH analogues, and their conjugates on proliferation, clonogenicity and cell cycle phase distribution of MCF-7 and Ishikawa human cancer cell lines was studied. GnRH-III, a sea lamprey GnRH analogue reduced cell proliferation by 35% and clonogenicity by 55%. Structural modifications either decreased, or did not alter biological activity. Conjugation of GnRH analogues including MI-1544, MI-1892, and GnRH-III with poly(N-vinylpyrrolidone-co-maleic acid) (P) through a tetrapeptide spacer GFLG(X) substantially increased the inhibitory effect of the GnRH analogues. The conjugate P-X-GnRH-III induced significant accumulation of cells in the G2/M phase; from 8% to 15.6% at 24 h and 9.8% to 15% at 48 h. It was concluded that conjugation of various GnRH analogues substantially enhanced their antiproliferative activity, strongly reduced cell clonogenicity and retarded cell progression through the cell division cycle at the G2/M phase.
Collapse
Affiliation(s)
- A Kálnay
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Watts CR, Mezei M, Murphy RF, Lovas S. Conformational space comparison of GnRH and lGnRH-III using molecular dynamics, cluster analysis and Monte Carlo thermodynamic integration. J Biomol Struct Dyn 2001; 18:733-48. [PMID: 11334110 DOI: 10.1080/07391102.2001.10506703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The conformational space available to GnRH and lGnRH-III was compared using 5.2 ns constant temperature and pressure molecular dynamics simulations with explicit TIP3P solvation and the AMBER v. 5.0 force field. Cluster analysis of both trajectories resulted in two groups of conformations. Results of free energy calculations, in agreement with previous experimental data, indicate that a conformation with a turn from residues 5 through 8 is preferred for GnRH in an aqueous environment. By contrast, a conformation with a helix from residues 2 through 7 with a bend from residues 6 through 10 is preferred for lGnRH-III in an aqueous environment. The side chains of His2 and Trp3 in lGnRH-III occupy different regions of phase space and participate in weakly polar interactions different from those in GnRH. The unique conformational properties of lGnRH-III may account for its specific anti cancer activity.
Collapse
Affiliation(s)
- C R Watts
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Otvös F, Murphy RF, Lovas S. Coupling difficulty following replacement of Tyr with HOTic during synthesis of an analog of an EGF B-loop fragment. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 53:302-7. [PMID: 10231718 DOI: 10.1034/j.1399-3011.1999.00026.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During Fmoc synthesis of an analog, [Abu HOTic]hEGF(20-31), of a fragment, Cys-Met-Tyr-Ile-Glu-Ala-Leu-Asp-Lys-Tyr-Ala-Cys, of the B-loop of human EGF, conductivity measurements showed that increased time was necessary for coupling and complete deprotection of the residues Met and Abu which followed the HOTic. Use of different active esterforming reagents, including HOBt and BOP, did not increase the yield. Use of symmetrical anhydride with extended coupling time increased the yield but did not complete the coupling. It appears that inclusion of HOTic in place of Tyr to introduce conformational constrain to peptide analogs can cause or augment a tendency towards conformations with increasing occlusion of N-terminal amino groups and result in the need for altered coupling strategies for completion of analog synthesis.
Collapse
Affiliation(s)
- F Otvös
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178-0405, USA
| | | | | |
Collapse
|
30
|
Lovas S, Pályi I, Vincze B, Horváth J, Kovács M, Mezö I, Tóth G, Teplán I, Murphy RF. Direct anticancer activity of gonadotropin-releasing hormone-III. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:384-9. [PMID: 9894843 DOI: 10.1111/j.1399-3011.1998.tb00662.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In previous studies GnRH-III, a variant of the hypothalamic neurohormone GnRH, was isolated from the brain of the sea lamprey and structurally characterized. GnRH-III is a hypothalamic neurohormone in both female and male sea lampreys. In the present work biological activities of GnRH-III in mammalian systems were examined. In superfused rat pituitary cells, GnRH-III at 1 nM to 100 nM neither induced LH-secretion nor inhibited the LH-secretion elicited by native GnRH and elicited LH release only at 1 microM. At high dose (500 microg/day) in vivo, GnRH-III behaved as a GnRH agonist, though, it was 1000-fold less active than ovurelin. The in vitro and in vivo results were in good agreement in showing that GnRH-III is only a weak agonist of the endocrine activity of GnRH. GnRH-III specifically bound to receptors on cancer cells and recognized not only the high-, but also the low-affinity binding sites. GnRH-III significantly suppressed growth of human cancer cells which have GnRH receptors. The inhibitory effect of GnRH-III on growth of cancer cells was specific and direct since the peptide did not have endocrine activity in the concentration range found to be effective in anticancer assays. GnRH-III inhibited equally the growth of ER-positive and -negative breast and TeR-positive and negative prostate cells.
Collapse
Affiliation(s)
- S Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|