1
|
Kim M, Hyun YE, Kang SY, Kim SW, Park JH, Joung M, Jeong LS. Synthesis and biological evaluation of sugar-modified truncated carbanucleosides as A 2A and A 3 adenosine receptor ligands to explore conformational effect to the receptors. Bioorg Med Chem 2024; 115:117986. [PMID: 39504593 DOI: 10.1016/j.bmc.2024.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study investigated the impact of conformation on the binding affinity of carbanucleosides to A2A and A3 adenosine receptors (ARs). A series of nucleosides, including saturated, unsaturated, North (N)-methano, and South (S)-methanocarbanucleosides was prepared, and their binding affinities to A2AAR and A3AR were assessed. Biological evaluations revealed that all synthesized (S)-methanocarbanucleosides had negligible binding to both receptors, and most (N)-methanocarbanucleosides exhibited high binding affinities. Molecular docking analysis showed that the (N)-methanocarbanucleoside 6a exhibited favorable interactions and minimal steric clashes in both A2AAR and A3AR. Conversely, the (S)-methanocarbanucleoside 7a appears to encounter significant steric clashes, which impeded its binding to A2AAR. Furthermore, when adopting the South conformation 7a was unable to bind to A3AR. Expanding upon the (N)-methanocarba moiety, various C8-aromatic groups were introduced to convert A2AAR agonists into antagonists and these modified compounds also exhibited strong binding affinity. These results suggest that the North conformation is favored by both A2AAR and A3AR, and that (N)-methanocarbanucleosides can serve as versatile structural moieties for dual targeting of A2AAR and A3AR. These findings offer promising avenues for the development of dual ligands for therapeutic applications in obesity and immunotherapy.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeon Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hoon Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Misuk Joung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Kim G, Hou X, Byun WS, Kim G, Jarhad DB, Lee G, Hyun YE, Yu J, Lee CS, Qu S, Warnick E, Gao ZG, Kim JY, Ji S, Shin H, Choi JR, Jacobson KA, Lee HW, Lee SK, Jeong LS. Structure-Activity Relationship of Truncated 2,8-Disubstituted-Adenosine Derivatives as Dual A 2A/A 3 Adenosine Receptor Antagonists and Their Cancer Immunotherapeutic Activity. J Med Chem 2023; 66:12249-12265. [PMID: 37603705 PMCID: PMC10896643 DOI: 10.1021/acs.jmedchem.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Woong Sub Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ji Yong Kim
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Seunghee Ji
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | - Hyunwoo Shin
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyuk Woo Lee
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Sang Kook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| |
Collapse
|
3
|
Hyun YE, Kim HR, Jeong LS. Stereoselective Synthesis of ( S)- and ( N)-Cyclopropyl-Fused Carbocyclic Nucleosides Using Stereoselective Cyclopropanation. J Org Chem 2021; 86:9828-9837. [PMID: 34184528 DOI: 10.1021/acs.joc.1c00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To determine which sugar conformation is favorable in binding to peroxisome proliferator-activated receptors, the conformationally locked south (S) and north (N) analogues were asymmetrically synthesized using a bicyclo[3.1.0]hexane template. The (S)-conformer was synthesized by employing "reagent-controlled" Charette asymmetric cyclopropanation in a 100% stereoselective manner, whereas the (N)-conformer was stereoselectively synthesized by using "substrate-controlled" hydroxyl-directed Simmons-Smith cyclopropanation as a key step.
Collapse
Affiliation(s)
- Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Guinan M, Benckendorff C, Smith M, Miller GJ. Recent Advances in the Chemical Synthesis and Evaluation of Anticancer Nucleoside Analogues. Molecules 2020; 25:E2050. [PMID: 32354007 PMCID: PMC7248840 DOI: 10.3390/molecules25092050] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleoside analogues have proven to be highly successful chemotherapeutic agents in the treatment of a wide variety of cancers. Several such compounds, including gemcitabine and cytarabine, are the go-to option in first-line treatments. However, these materials do have limitations and the development of next generation compounds remains a topic of significant interest and necessity. Herein, we discuss recent advances in the chemical synthesis and biological evaluation of nucleoside analogues as potential anticancer agents. Focus is paid to 4'-heteroatom substitution of the furanose oxygen, 2'-, 3'-, 4'- and 5'-position ring modifications and the development of new prodrug strategies for these materials.
Collapse
Affiliation(s)
- Mieke Guinan
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.G.); (C.B.)
| | - Caecilie Benckendorff
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.G.); (C.B.)
| | - Mark Smith
- Medicinal Chemistry Knowledge Center, Stanford ChEM-H, 290 Jane Stanford Way, Stanford, CA 94305, USA;
| | - Gavin J. Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.G.); (C.B.)
| |
Collapse
|
5
|
Komine H, Mori S, Morihiro K, Ishida K, Okuda T, Kasahara Y, Aoyama H, Yamaguchi T, Obika S. Synthesis and Evaluation of Artificial Nucleic Acid Bearing an Oxanorbornane Scaffold. Molecules 2020; 25:E1732. [PMID: 32283778 PMCID: PMC7180610 DOI: 10.3390/molecules25071732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
Natural oligonucleotides have many rotatable single bonds, and thus their structures are inherently flexible. Structural flexibility leads to an entropic loss when unwound oligonucleotides form a duplex with single-stranded DNA or RNA. An effective approach to reduce such entropic loss in the duplex-formation is the conformational restriction of the flexible phosphodiester linkage and/or sugar moiety. We here report the synthesis and biophysical properties of a novel artificial nucleic acid bearing an oxanorbornane scaffold (OxNorNA), where the adamant oxanorbornane was expected to rigidify the structures of both the linkage and sugar parts of nucleic acid. OxNorNA phosphoramidite with a uracil (U) nucleobase was successfully synthesized over 15 steps from a known sugar-derived cyclopentene. Thereafter, the given phosphoramidite was incorporated into the designed oligonucleotides. Thermal denaturation experiments revealed that oligonucleotides modified with the conformationally restricted OxNorNA-U properly form a duplex with the complementally DNA or RNA strands, although the Tm values of OxNorNA-U-modified oligonucleotides were lower than those of the corresponding natural oligonucleotides. As we had designed, entropic loss during the duplex-formation was reduced by the OxNorNA modification. Moreover, the OxNorNA-U-modified oligonucleotide was confirmed to have extremely high stability against 3'-exonuclease activity, and its stability was even higher than those of the phosphorothioate-modified counterparts (Sp and Rp). With the overall biophysical properties of OxNorNA-U, we expect that OxNorNA could be used for specialized applications, such as conformational fixation and/or bio-stability enhancement of therapeutic oligonucleotides (e.g., aptamers).
Collapse
Affiliation(s)
- Hibiki Komine
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Shohei Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenta Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Takumi Okuda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (H.K.); (S.M.); (K.I.); (T.O.); (Y.K.); (H.A.)
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
6
|
Yoon JS, Kim G, Jarhad DB, Kim HR, Shin YS, Qu S, Sahu PK, Kim HO, Lee HW, Wang SB, Kong YJ, Chang TS, Ogando NS, Kovacikova K, Snijder EJ, Posthuma CC, van Hemert MJ, Jeong LS. Design, Synthesis, and Anti-RNA Virus Activity of 6'-Fluorinated-Aristeromycin Analogues. J Med Chem 2019; 62:6346-6362. [PMID: 31244113 PMCID: PMC7075649 DOI: 10.1021/acs.jmedchem.9b00781] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 6'-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6'-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a-e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a-c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6',6'-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6'-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.
Collapse
Affiliation(s)
- Ji-Seong Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju 500-757 , Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Young-Sup Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmaceutical Engineering , Henan University of Animal Husbandry and Economy , Zhengzhou , 450046 , China
| | | | - Hea Ok Kim
- Future Medicine Co., Ltd. , Seoul 06665 , Korea
| | | | - Su Bin Wang
- College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Yun Jeong Kong
- College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Natacha S Ogando
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Kristina Kovacikova
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| |
Collapse
|
7
|
Li PJ, Dräger G, Kirschning A. A General Biomimetic Hetero-Diels-Alder Approach to the Core Skeletons of Xenovulene A and the Sterhirsutins A and B. Org Lett 2019; 21:998-1001. [PMID: 30694066 DOI: 10.1021/acs.orglett.8b04003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biomimetic, regio- and stereoselective approach to the 5,6,11-tricyclic core skeleton of xenovulene A, as well as sterhirsutins A and B, is described. The key steps are a biomimetic inverse-electron-demand hetero-Diels-Alder cycloaddition of α-humulene and a ribose-derived vinyl ketone, followed by acid-catalyzed rearrangement of the 1,3-dioxolane that neighbors the resultant cyclic enol ether.
Collapse
Affiliation(s)
- Pei-Jun Li
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1 B , 30167 Hannover , Germany
| | - Gerald Dräger
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1 B , 30167 Hannover , Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ) , Leibniz Universität Hannover , Schneiderberg 1 B , 30167 Hannover , Germany
| |
Collapse
|
8
|
Jarhad DB, Jang MH, Shin YS, Kim G, Kim HR, Hyun YE, Yoon JS, Jeong LS. An efficient synthesis of fluoro-neplanocin A analogs using electrophilic fluorination and palladium-catalyzed dehydrosilylation. Org Chem Front 2019. [DOI: 10.1039/c9qo00099b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternative and efficient approach to neplanocin A analogs 1b and 1d has been developed using electrophilic fluorination and Pd-catalyzed dehydrosilylation.
Collapse
Affiliation(s)
- Dnyandev B. Jarhad
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Min Hwan Jang
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Young Sup Shin
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Ji-seong Yoon
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences
- College of Pharmacy
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
9
|
Kim G, Yoon JS, Jarhad DB, Shin YS, Majik MS, Mulamoottil VA, Hou X, Qu S, Park J, Baik MH, Jeong LS. Asymmetric Synthesis of (-)-6'-β-Fluoro-aristeromycin via Stereoselective Electrophilic Fluorination. Org Lett 2018; 19:5732-5735. [PMID: 29028350 DOI: 10.1021/acs.orglett.7b02470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(-)-6'-β-Fluoro-aristeromycin (2), a potent inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase, has been synthesized via stereoselective electrophilic fluorination followed by a purine base build-up approach. Interestingly, purine base condensation using a cyclic sulfate resulted in a synthesis of (+)-5'-β-fluoro-isoaristeromycin (2a). Computational analysis indicates that the fluorine atom controlled the regioselectivity of the purine base substitution.
Collapse
Affiliation(s)
- Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Ji-Seong Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Young Sup Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Mahesh S Majik
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Varughese A Mulamoottil
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , Daejeon, 34141, Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , Daejeon, 34141, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, 151-742, Korea
| |
Collapse
|
10
|
Huang KX, Xie MS, Zhang QY, Qu GR, Guo HM. Enantioselective Synthesis of Carbocyclic Nucleosides via Asymmetric [3 + 2] Annulation of α-Purine-Substituted Acrylates with MBH Carbonates. Org Lett 2018; 20:389-392. [PMID: 29303270 DOI: 10.1021/acs.orglett.7b03625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An efficient route to chiral carbocyclic nucleoside analogues containing a quaternary stereocenter and a C═C double bond has been established via a highly enantioselective [3 + 2] annulation of Morita-Baylis-Hillman (MBH) carbonates with α-purine-substituted acrylates. With 20 mol % (S)-SITCP as the catalyst, various chiral carbocyclic nucleoside analogues with a quaternary stereocenter and a C═C double bond were obtained in high yields (up to 92%) with good diastereoselectivities (up to 10:1 dr) and excellent enantioselectivities (up to 96% ee). Furthermore, the corresponding products were subjected to diverse transformations to afford interesting and potentially useful chiral carbocyclic nucleosides.
Collapse
Affiliation(s)
- Ke-Xin Huang
- School of Environment and ‡Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, China
| | - Ming-Sheng Xie
- School of Environment and ‡Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, China
| | - Qi-Ying Zhang
- School of Environment and ‡Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- School of Environment and ‡Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- School of Environment and ‡Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Thieme N, Breit B. Enantioselective and Regiodivergent Addition of Purines to Terminal Allenes: Synthesis of Abacavir. Angew Chem Int Ed Engl 2017; 56:1520-1524. [DOI: 10.1002/anie.201610876] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Niels Thieme
- Institut für Organische Chemie und BiochemieAlbert-Ludwigs-Universität Alberstr. 21 79104 Freiburg Germany
| | - Bernhard Breit
- Institut für Organische Chemie und BiochemieAlbert-Ludwigs-Universität Alberstr. 21 79104 Freiburg Germany
| |
Collapse
|
12
|
Thieme N, Breit B. Enantioselective and Regiodivergent Addition of Purines to Terminal Allenes: Synthesis of Abacavir. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610876] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Niels Thieme
- Institut für Organische Chemie und Biochemie; Albert-Ludwigs-Universität; Alberstr. 21 79104 Freiburg Germany
| | - Bernhard Breit
- Institut für Organische Chemie und Biochemie; Albert-Ludwigs-Universität; Alberstr. 21 79104 Freiburg Germany
| |
Collapse
|
13
|
Jeong LS, Lee JA. Recent Advances in the Synthesis of the Carbocyclic Nucleosides as Potential Antiviral Agents. ACTA ACUST UNITED AC 2016; 15:235-50. [PMID: 15535045 DOI: 10.1177/095632020401500502] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compared with 4′-oxonucleosides, there have been far fewer systematic structure-activity relationship studies on carbocyclic nucleosides as antiviral and antitumour agents. This is mainly because of the synthetic problems in preparing the carbasugars. However, the recent discovery of the ring-closing metathesis (RCM) (a powerful tool for the preparation of 5-membered carbasugar via C-C bond formation) has made it possible to synthesize the key carbasugars to a preparative scale. This review summarizes the asymmetric syntheses of carbasugars and carbocyclic nucleosides, using an RCM reaction as a key step. Furthermore, the review includes valuable information for designing and synthesizing novel carbocyclic nucleosides.
Collapse
Affiliation(s)
- Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul, South Korea.
| | | |
Collapse
|
14
|
Simeonov SP, Nunes JPM, Guerra K, Kurteva VB, Afonso CAM. Synthesis of Chiral Cyclopentenones. Chem Rev 2016; 116:5744-893. [DOI: 10.1021/cr500504w] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - João P. M. Nunes
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Krassimira Guerra
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanya B. Kurteva
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
15
|
Affiliation(s)
- Sophie Racine
- Ecole polytechnique fédérale de Lausanne; Institut des sciences et ingénierie chimiques; SB ISIC LCSO, EPFL CH-1015 Lausanne Switzerland
| | - Jérémy Vuilleumier
- Ecole polytechnique fédérale de Lausanne; Institut des sciences et ingénierie chimiques; SB ISIC LCSO, EPFL CH-1015 Lausanne Switzerland
| | - Jérôme Waser
- Ecole polytechnique fédérale de Lausanne; Institut des sciences et ingénierie chimiques; SB ISIC LCSO, EPFL CH-1015 Lausanne Switzerland
| |
Collapse
|
16
|
Das S, Panda A, Pal S. A common and versatile synthetic route to (-) and (+) pentenomycin I, (+) halopentenomycin I and dehydropentenomycin. Carbohydr Res 2015; 416:24-31. [PMID: 26342153 DOI: 10.1016/j.carres.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
A versatile and stereoselective total synthesis of (+) and (-) pentenomycin I, (+) halopentenomycins I and dehydropentenomycin from a common chiral polyhydroxylated cyclopentene through oxidation and protection/deprotection has been described. Stereoselective hydroxymethylation, stereoselective Grignard reaction and ring closing metathesis are the key features of our approach.
Collapse
Affiliation(s)
- Sulagna Das
- Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar, Orissa 751007, India
| | - Amarendra Panda
- Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar, Orissa 751007, India
| | - Shantanu Pal
- Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar, Orissa 751007, India.
| |
Collapse
|
17
|
Tan YX, Santhanakrishnan S, Yang HY, Chai CLL, Tam EKW. Synthesis of Neplanocin A and Its 3′-Epimer via an Intramolecular Baylis–Hillman Reaction. J Org Chem 2014; 79:8059-66. [DOI: 10.1021/jo501248e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yun Xuan Tan
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 8 Biomedical Grove, Neuros#07-01, Singapore 13866
| | - Sridhar Santhanakrishnan
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 8 Biomedical Grove, Neuros#07-01, Singapore 13866
| | - Hai Yan Yang
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 8 Biomedical Grove, Neuros#07-01, Singapore 13866
| | - Christina L. L. Chai
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 8 Biomedical Grove, Neuros#07-01, Singapore 13866
- Department
of Pharmacy,
Faculty of Science, National University of Singapore, 18 Science
Drive 4, Singapore 117543
| | - Eric Kwok Wai Tam
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 8 Biomedical Grove, Neuros#07-01, Singapore 13866
| |
Collapse
|
18
|
Synthesis of (Carbo)nucleoside Analogues by [3+2] Annulation of Aminocyclopropanes. Angew Chem Int Ed Engl 2014; 53:8484-7. [DOI: 10.1002/anie.201404832] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 11/07/2022]
|
19
|
Racine S, de Nanteuil F, Serrano E, Waser J. Synthesis of (Carbo)nucleoside Analogues by [3+2] Annulation of Aminocyclopropanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404832] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Mulamoottil VA, Nayak A, Jeong LS. Recent Advances in the Synthesis of Carbocyclic Nucleosides via Ring-Closing Metathesis. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57:1344-54. [PMID: 24456490 PMCID: PMC3954500 DOI: 10.1021/jm4015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives
with 2-hexynyl substitution
were synthesized to examine parallels with corresponding 4′-thioadenosines.
Hydrophobic N6 and/or C2 substituents were tolerated in
A3AR binding, but only an unsubstituted 6-amino group with
a C2-hexynyl group promoted high hA2AAR affinity. A small
hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed
excellent binding affinity at the hA3AR and was better
than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects
in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis
model. Most compounds strongly inhibited TGF-β1-induced collagen
I upregulation, and their A3AR binding affinities were
proportional to antifibrotic effects; 4b was most potent
(IC50 = 0.83 μM), indicating its potential as a good
therapeutic candidate for treating renal fibrosis.
Collapse
Affiliation(s)
- Akshata Nayak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tosh DK, Jacobson KA. Methanocarba ring as a ribose modification in ligands of G protein-coupled purine and pyrimidine receptors: synthetic approaches. MEDCHEMCOMM 2013; 2013:619-630. [PMID: 26161251 PMCID: PMC4493925 DOI: 10.1039/c2md20348k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine receptors (ARs) and P2Y receptors for purine and pyrimidine nucleotides have widespread distribution and regulate countless physiological processes. Various synthetic ligands are in clinical trials for treatment of inflammatory diseases, pain, cancer, thrombosis, ischemia, and other conditions. The methanocarba (bicyclo[3.1.0]hexane) ring system as a rigid substitution for ribose, which maintains either a North (N) or South (S) conformation, tends to preserve or enhance the potency and/or selectivity for certain receptor subtypes. This review summarizes recent developments in the synthetic approaches to these biologically important nucleoside and nucleotide analogues.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Zimmermann SC, Sadler JM, O’Daniel PI, Kim NT, Seley-Radtke KL. "Reverse" carbocyclic fleximers: synthesis of a new class of adenosine deaminase inhibitors. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:137-54. [PMID: 23473101 PMCID: PMC3712750 DOI: 10.1080/15257770.2013.771187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of flexible carbocyclic pyrimidine nucleosides has been designed and synthesized. In contrast to previously reported "fleximers" from our laboratory, these analogues have the connectivity of the heterocyclic base system "reversed", where the pyrimidine ring is attached to the sugar moiety, rather than the five membered imidazole ring. As was previously seen with the ribose fleximers, their inherent flexibility should allow them to adjust to enzyme binding site mutations, as well as increase the affinity for atypical enzymes. Preliminary biological screening has revealed surprising inhibition of adenosine deaminase, despite their lack of resemblance to adenosine.
Collapse
Affiliation(s)
- Sarah C. Zimmermann
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Joshua M. Sadler
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | - Peter I. O’Daniel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Nathaniel T. Kim
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland
| | | |
Collapse
|
24
|
Boutureira O, Matheu MI, Díaz Y, Castillón S. Advances in the enantioselective synthesis of carbocyclic nucleosides. Chem Soc Rev 2013; 42:5056-72. [DOI: 10.1039/c3cs00003f] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Tosh DK, Paoletta S, Deflorian F, Phan K, Moss SM, Gao ZG, Jiang X, Jacobson KA. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55:8075-90. [PMID: 22921089 PMCID: PMC3463139 DOI: 10.1021/jm300965a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A(1) adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N(6)-cycloalkylmethyl 4'-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N(6)-dicyclopropylmethyl, K(i) = 47.9 nM) as a moderately A(1)AR-selective full agonist. Two stereochemically defined N(6)-methynyl group substituents displayed narrow SAR; groups larger than cyclobutyl greatly reduced AR affinity, and those larger or smaller than cyclopropyl reduced A(1)AR selectivity. Nucleoside docking to A(1)AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger "A" forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), and carbon chains of glutamates (EL2) and the smaller subpocket "B" forming contacts between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A(1)AR agonists. Truncated nucleosides, an appealing preclinical approach, have more druglike physicochemical properties than other A(1)AR agonists. Thus, we identified highly restricted regions for substitution around N(6) suitable for an A(1)AR agonist with anticonvulsant activity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven M. Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaohui Jiang
- Anticonvulsant Screening Program, Office of Translational Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Tosh DK, Paoletta S, Phan K, Gao ZG, Jacobson KA. Truncated Nucleosides as A(3) Adenosine Receptor Ligands: Combined 2-Arylethynyl and Bicyclohexane Substitutions. ACS Med Chem Lett 2012; 3:596-601. [PMID: 23145215 DOI: 10.1021/ml300107e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
C2-Arylethynyladenosine-5'-N-methyluronamides containing a bicyclo[3.1.0]hexane ((N)-methanocarba) ring are selective A(3) adenosine receptor (AR) agonists. Similar 4'-truncated C2-arylethynyl-(N)-methanocarba nucleosides containing alkyl or alkylaryl groups at the N(6) position were low-efficacy agonists or antagonists of the human A(3)AR with high selectivity. Higher hA(3)AR affinity was associated with N(6)-methyl and ethyl (K(i) 3-6 nM), than with N(6)-arylalkyl groups. However, combined C2-phenylethynyl and N(6)-2-phenylethyl substitutions in selective antagonist 15 provided a K(i) of 20 nM. Differences between 4'-truncated and nontruncated analogues of extended C2-p-biphenylethynyl substitution suggested a ligand reorientation in AR binding, dominated by bulky N(6) groups in analogues lacking a stabilizing 5'-uronamide moiety. Thus, 4'-truncation of C2-arylethynyl-(N)-methanocarba adenosine derivatives is compatible with general preservation of A(3)AR selectivity, especially with small N(6) groups, but reduced efficacy in A(3)AR-induced inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Silvia Paoletta
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Khai Phan
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic
Chemistry, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
27
|
|
28
|
Choi MJ, Chandra G, Lee HW, Hou X, Choi WJ, Phan K, Jacobson KA, Jeong LS. Regio- and stereoselective synthesis of truncated 3'-aminocarbanucleosides and their binding affinity at the A3 adenosine receptor. Org Biomol Chem 2011; 9:6955-62. [PMID: 21860878 DOI: 10.1039/c1ob05853c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of truncated 3'-aminocarbanucleosides 4a-d via a stereo- and regioselective conversion of a diol 9 to bromoacetate 11a and their binding affinity towards the human A(3) adenosine receptor are described.
Collapse
Affiliation(s)
- Mun Ju Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Stéphane P. Roche
- Department of Chemistry, Center for Chemical Methodology and Library Development, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - David J. Aitken
- Université Paris‐Sud 11, Laboratoire de Synthèse Organique & Méthodologie, ICMMO (CNRS UMR 8182), 15 rue Georges Clemenceau, 91405 Orsay cedex, France, Fax: +33‐1‐69156278
| |
Collapse
|
30
|
Prabhakar P, Rajaram S, Reddy DK, Shekar V, Venkateswarlu Y. Total synthesis of the phytotoxic stagonolides A and B. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Pradere U, Kumamoto H, Roy V, Agrofoglio LA. Preparation of CarbocyclicC-Nucleosides from α-Chlorooxime Precursor. European J Org Chem 2010. [DOI: 10.1002/ejoc.200900950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Tosh DK, Chinn M, Ivanov AA, Klutz AM, Gao ZG, Jacobson KA. Functionalized congeners of A3 adenosine receptor-selective nucleosides containing a bicyclo[3.1.0]hexane ring system. J Med Chem 2009; 52:7580-92. [PMID: 19499950 PMCID: PMC3109436 DOI: 10.1021/jm900426g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(N)-Methanocarba nucleosides containing bicyclo[3.1.0]hexane replacement of the ribose ring previously demonstrated selectivity as A(3) adenosine receptor (AR) agonists (5'-uronamides) or antagonists (5'-truncated). Here, these two series were modified in parallel at the adenine C2 position. N(6)-3-Chlorobenzyl-5'-N-methyluronamides derivatives with functionalized 2-alkynyl chains of varying length terminating in a reactive carboxylate, ester, or amine group were full, potent human A(3)AR agonists. Flexibility of chain substitution allowed the conjugation with a fluorescent cyanine dye (Cy5) and biotin, resulting in binding K(i) values of 17 and 36 nM, respectively. The distal end of the chain was predicted by homology modeling to bind at the A(3)AR extracellular regions. Corresponding l-nucleosides were nearly inactive in AR binding. In the 5'-truncated nucleoside series, 2-Cl analogues were more potent at A(3)AR than 2-H and 2-F, functional efficacy in adenylate cyclase inhibition varied, and introduction of a 2-alkynyl chain greatly reduced affinity. SAR parallels between the two series lost stringency at distal positions. The most potent and selective novel compounds were amine congener 15 (K(i) = 2.1 nM) and truncated partial agonist 22 (K(i) = 4.9 nM).
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei A. Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Rollins Research Center, Atlanta, Georgia 30322
| | - Athena M. Klutz
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Kurteva VB, Afonso CAM. Synthesis of Cyclopentitols by Ring-Closing Approaches. Chem Rev 2009; 109:6809-57. [DOI: 10.1021/cr900169j] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria, and CQFM, Centro de Química-Física Molecular, IN - Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria, and CQFM, Centro de Química-Física Molecular, IN - Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
34
|
Synthesis of Neplanocin A Analog with 2′-“up”-C-Methyl Substituent as Potential Anti-HCV Agent. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.9.2043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Kumamoto H, Deguchi K, Wagata T, Furuya Y, Odanaka Y, Kitade Y, Tanaka H. Radical-mediated stannylation of vinyl sulfones: access to novel 4′-modified neplanocin A analogues. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.07.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Pal S, Choi WJ, Choe SA, Heller CL, Gao ZG, Chinn M, Jacobson KA, Hou X, Lee SK, Kim HO, Jeong LS. Structure-activity relationships of truncated adenosine derivatives as highly potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 2009; 17:3733-8. [PMID: 19375920 DOI: 10.1016/j.bmc.2009.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 11/17/2022]
Abstract
On the basis of potent and selective binding affinity of truncated 4'-thioadenosine derivatives at the human A(3) adenosine receptor (AR), their bioisosteric 4'-oxo derivatives were designed and synthesized from commercially available 2,3-O-isopropylidene-D-erythrono lactone. The derivatives tested in AR binding assays were substituted at the C2 and N(6) positions. All synthesized nucleosides exhibited potent and selective binding affinity at the human A(3) AR. They were less potent than the corresponding 4'-thio analogues, but showed still selective to other subtypes. The 2-Cl series generally were better than the 2-H series in view of binding affinity and selectivity. Among compounds tested, compound 5d (X=Cl, R=3-bromobenzyl) showed the highest binding affinity (K(i)=13.0+/-6.9 nM) at the hA(3) AR with high selectivity (at least 88-fold) in comparison to other AR subtypes. Like the corresponding truncated 4'-thio series, compound 5d antagonized the action of an agonist to inhibit forskolin-stimulated adenylate cyclase in hA(3) AR-expressing CHO cells. Although the 4'-oxo series were less potent than the 4'-thio series, this class of human A(3) AR antagonists is also regarded as another good template for the design of A(3) AR antagonists and for further drug development.
Collapse
Affiliation(s)
- Shantanu Pal
- Department of Bioinspired Science and Division of Life and Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Broggi J, Kumamoto H, Berteina-Raboin S, Nolan SP, Agrofoglio LA. Click Azide-Alkyne Cycloaddition for the Synthesis of D-(-)-1,4-Disubstituted Triazolo-Carbanucleosides. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
Ivanova NA, Valiullina ZR, Akhmetdinova NP, Miftakhov MS. Synthesis of (4S,5S)-4,5-O-isopropylidene-cyclopent-2-ene-1-one via the intramolecular Reformatsky reaction. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Kumamoto H, Deguchi K, Takahashi N, Tanaka H, Kitade Y. Synthesis of novel 4'-modified neplanocin A analogues and their inhibitory activity against S-adenosyl-L-l-homocysteine hydrolase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:733-6. [PMID: 18066891 DOI: 10.1080/15257770701493617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new approach was developed for the synthesis of 4'-modified neplanocin A analogues, as potential inhibitors against S-adenosyl-L-homocysteine hydrolase. The vinylstannane 13, a key intermediate in the present approach, was prepared by radical-mediated sulfur-extrusive stannylation.
Collapse
Affiliation(s)
- Hiroki Kumamoto
- School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
41
|
Synthesis of (−)-neplanocin A with the highest overall yield via an efficient Mitsunobu coupling. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.06.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Kim IS, Kim SJ, Lee JK, Li QR, Jung YH. Synthesis of (2R,5S)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine (DGDP) via stereoselective amination using chlorosulfonyl isocyanate. Carbohydr Res 2007; 342:1502-9. [PMID: 17509544 DOI: 10.1016/j.carres.2007.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/20/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
A stereoselective approach for synthesizing (2R,5S)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine 1 (2,5-dideoxy-2,5-imino-d-glucitol, DGDP) was achieved using a seven-step approach starting from 2,3,4,6-tetra-O-benzyl-d-mannose (7). Key steps for the preparation of the title compound 1 involved the regioselective and diastereoselective amination of the cinnamyl anti-1,2-polybenzyl ethers 5 and 6 using chlorosulfonyl isocyanate (CSI) and ring cyclization to form the pyrrolidine ring. The reaction between anti-1,2-polybenzyl ether 5 and CSI in toluene at 0 degrees C afforded the corresponding anti-1,2-amino alcohol 4 as a major product with a diastereoselectivity of 16:1 in 76% yield. The mechanism underlying these reactions may be explained by the neighboring-group effect leading to the retention of stereochemistry.
Collapse
Affiliation(s)
- In Su Kim
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Niidu A, Paju A, Eek M, Müürisepp AM, Pehk T, Lopp M. Synthesis of chiral hydroxylated cyclopentanones and cyclopentanes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
|
45
|
Ramana GV, Rao BV. Stereoselective synthesis of (−)-gabosine C using a Nozaki–Hiyama–Kishi reaction and RCM. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Synthesis of l-cyclopentenyl nucleosides using ring-closing metathesis and palladium-mediated allylic alkylation methodologies. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Choi WJ, Moon HR, Kim HO, Yoo BN, Lee JA, Shin DH, Jeong LS. Preparative and stereoselective synthesis of the versatile intermediate for carbocyclic nucleosides: effects of the bulky protecting groups to enforce facial selectivity. J Org Chem 2004; 69:2634-6. [PMID: 15049678 DOI: 10.1021/jo0356762] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparative and stereoselective synthesis (45-50% overall yields) of the target compound 17 has been accomplished from D-ribose. The bulky protecting groups such as TBDPS and Trityl enforced the facial selectivity during Grignard reaction to give the tertiary beta-allylic alcohol 16 as the sole product, which was oxidatively rearranged to the key molecule 17 in excellent yield.
Collapse
Affiliation(s)
- Won Jun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Kim HO, Yoo SJ, Ahn HS, Choi WJ, Moon HR, Lee KM, Chun MW, Jeong LS. Synthesis of fluorinated cyclopentenyladenine as potent inhibitor of S -adenosylhomocysteine hydrolase. Bioorg Med Chem Lett 2004; 14:2091-3. [PMID: 15080985 DOI: 10.1016/j.bmcl.2004.02.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 02/07/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Fluoro-DHCeA (4) was efficiently synthesized from d-cyclopentenone derivative 5 using electrophilic fluorination as a key step. Fluoro-DHCeA (4) was found to be as potent as DHCeA (3), but exhibited irreversible inhibition of enzyme unlike DHCeA (3) showing reversible inhibition. From this study, 4(')-hydroxymethyl groups of neplanocin A and fluoro-neplanocin A played an important role in binding to the active site of the enzyme.
Collapse
Affiliation(s)
- Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Amblard F, Nolan SP, Gillaizeau I, Agrofoglio LA. A new route to acyclic nucleosides via palladium-mediated allylic alkylation and cross-metathesis. Tetrahedron Lett 2003. [DOI: 10.1016/j.tetlet.2003.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|