1
|
Chen YC, Zeng WZ, Li SM, Chou JY, Tsai SE, Fuh Wong F. One-Pot Double Oxidation Synthesis of N-1-Piperidonyl Amides From N-1-Piperidinyl Amides with meta-Chloroperbenzoic Acid: Rimonabant Analogue as Model Study. Chemistry 2023; 29:e202300702. [PMID: 37272609 DOI: 10.1002/chem.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A simple and efficient one-pot oxidation synthesis of N-1-piperidonyl amides was successfully developed through the double oxidation of hydrazides (involving hydrazonium formation, azodioxy-carbonyl compounds generation, and α-carbon oxidation) by using meta-chloroperbenzoic acid (mCPBA). The convenient oxidation method was also extended to Rimonabant analogue. The lactam oxidized Rimonabant analogue was first successfully synthesized for demonstrating the construction and characterized by NMR spectroscopic methods and the single-crystal X-ray diffraction study (ORTEP).
Collapse
Affiliation(s)
- Yu-Chieh Chen
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Wei-Zheng Zeng
- Department of Nutrition, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Sin-Min Li
- Institute of Translation Medicine and New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Jia-Yu Chou
- Master Program for Pharmaceutical Manufacture, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Shuo-En Tsai
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| |
Collapse
|
2
|
Ferreira VF, de B. da Silva T, Pauli FP, Ferreira PG, da S. M. Forezi L, de S. Lima CG, de C. da Silva F. Dimroth´s Rearrangement as a Synthetic Strategy Towards New Heterocyclic Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200805114837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular rearrangements are important tools to increase the molecular diversity
of new bioactive compounds, especially in the class of heterocycles. This review deals
specifically with a very famous and widely applicable rearrangement known as the Dimroth
Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude
was greatly expanded to other heterocycles, as well as from laboratory to large
scale production of drugs and intermediates. The reactions that were discussed in this review
were selected with the aim of demonstrating the windows that may be open by the
Dimroth's rearrangement, especially in what regards the development of new synthetic approaches
toward biologically active compounds.
Collapse
Affiliation(s)
- Vitor F. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Thais de B. da Silva
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Fernanda P. Pauli
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Patricia G. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Luana da S. M. Forezi
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Carolina G. de S. Lima
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Fernando de C. da Silva
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| |
Collapse
|
3
|
Li Z, Chen J, Wu L, Ren A, Lu P, Wang Y. Preparation of 4-Diazoisoquinolin-3-ones via Dimroth Rearrangement and Their Extension to 4-Aryltetrahydroisoquinolin-3-ones. Org Lett 2019; 22:26-30. [DOI: 10.1021/acs.orglett.9b03708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Junrong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Anni Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
4
|
Saladino R, Neri V, Checconi P, Celestino I, Nencioni L, Palamara AT, Crucianelli M. Synthesis of 2'-deoxy-1'-homo-N-nucleosides with anti-influenza activity by catalytic methyltrioxorhenium (MTO)/H2O2 oxyfunctionalization. Chemistry 2012; 19:2392-404. [PMID: 23225323 DOI: 10.1002/chem.201201285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/15/2012] [Indexed: 01/22/2023]
Abstract
This paper describes a new route for the synthesis of 1'-homo-N-nucleoside derivatives by means of either methyltrioxorhenium (MTO) or supported MTO catalysts, with H(2)O(2) as the primary oxidant. Under these selective conditions, the oxyfunctionalization of the heterocyclic ring and the N heteroatom oxidation were operative processes, regardless of the type of substrate used, that is, purine or pyrimidine derivatives. In addition, the oxidation of 1'-homo-N-thionucleosides, showed the occurrence of site-specific oxidative nucleophilic substitutions of the heterocyclic ring. The MTO/H(2)O(2) system showed, in general, high reactivity under both homogeneous and heterogeneous conditions, affording the final products with high conversion values of substrates and from medium to high yields. Many of the novel 1'-homo-N-nucleoside analogues were active against the influenza A virus, without any cytotoxic effects, retaining their activity in both protected and unprotected forms.
Collapse
Affiliation(s)
- Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, via S. Camillo de Lellis, I-01100 Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Purohit MK, Poduch E, Wei LW, Crandall IE, To T, Kain KC, Pai EF, Kotra LP. Novel cytidine-based orotidine-5'-monophosphate decarboxylase inhibitors with an unusual twist. J Med Chem 2012; 55:9988-97. [PMID: 22991951 DOI: 10.1021/jm301176r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orotidine-5'-monophosphate decarboxylase (ODCase) is an interesting enzyme with an unusual catalytic activity and a potential drug target in Plasmodium falciparum, which causes malaria. ODCase has been shown to exhibit unusual and interesting interactions with a variety of nucleotide ligands. Cytidine-5'-monophosphate (CMP) is a poor ligand of ODCase, and CMP binds to the active site of ODCase with an unusual orientation and conformation. We designed N3- and N4-modified CMP derivatives as novel ligands to ODCase. These novel CMP derivatives and their corresponding nucleosides were evaluated against Plasmodium falciparum ODCase and parasitic cultures, respectively. These derivatives exhibited improved inhibition of the enzyme catalytic activity, displayed interesting binding conformations and unusual molecular rearrangements of the ligands. These findings with the modified CMP nucleotides underscored the potential of transformation of poor ligands to ODCase into novel inhibitors of this drug target.
Collapse
Affiliation(s)
- Meena K Purohit
- Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ouellet SG, Gauvreau D, Cameron M, Dolman S, Campeau LC, Hughes G, O’Shea PD, Davies IW. Convergent, Fit-For-Purpose, Kilogram-Scale Synthesis of a 5-Lipoxygenase Inhibitor. Org Process Res Dev 2012. [DOI: 10.1021/op200299p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stéphane G. Ouellet
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Danny Gauvreau
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Mark Cameron
- Department of Process Research, Merck & Co., Rahway, New Jersey 07065, United States
| | - Sarah Dolman
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Louis-Charles Campeau
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Gregory Hughes
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Paul D. O’Shea
- Department
of Process Research, Merck Frosst Canada, Kirkland, Quebec H9H 3L1, Canada
| | - Ian W. Davies
- Department of Process Research, Merck & Co., Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Anti-inflammatory and antioxidant components from Hygroryza aristata. Molecules 2011; 16:1917-27. [PMID: 21358585 PMCID: PMC6259609 DOI: 10.3390/molecules16031917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/24/2022] Open
Abstract
Twenty-six known compounds and two new compounds, including a new lignan, (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1), and a new indole alkaloid, hygarine (2), were isolated from the extracts of Hygroryza aristata (Gramineae). The structures of all compounds were elucidated on the basis of NMR spectral analysis. The compounds (-)-epigallocatechin-3-O-gallate (4) and (-)-epicatechin-3-O-gallate (5) possess free radical scavenging activities and compound 1 could inhibit superoxide anion generation and elastase release by fMLP/CB-induced human neutrophils with IC50 values of 19.33 ± 0.86 and 24.14 ± 1.59 μM, respectively.
Collapse
|
8
|
Tsunoda H, Kudo T, Masaki Y, Ohkubo A, Seio K, Sekine M. Biochemical behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions. Nucleic Acids Res 2011; 39:2995-3004. [PMID: 21300642 PMCID: PMC3074161 DOI: 10.1093/nar/gkq914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To clarify the biochemical behavior of 2'-deoxyribonucleoside 5'-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (C(o)) and adenine N-oxide (A(o)), we examined their base recognition ability in DNA duplex formation using melting temperature (T(m)) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the T(m) values of modified DNA-DNA duplexes incorporating 2'-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo(-)) and Vent (exo(-)) suggested that C(o) and A(o) selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo(-)) toward A(o) on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator.
Collapse
Affiliation(s)
- Hirosuke Tsunoda
- Department of Life Science, Tokyo Institute of Technology and CREST, JST, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
9
|
El Ashry ESH, Nadeem S, Shah MR, Kilany YE. Recent Advances in the Dimroth Rearrangement. ADVANCES IN HETEROCYCLIC CHEMISTRY 2010. [DOI: 10.1016/s0065-2725(10)01005-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Filák L, Riedl Z, Egyed O, Czugler M, Hoang CN, Schantl JG, Hajós G. A new synthesis of the linearly fused [1,2,4]triazolo[1,5-b]isoquinoline ring. Observation of an unexpected Dimroth rearrangement. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.10.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhong M, Strobel SA. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction. J Org Chem 2008; 73:603-11. [PMID: 18081346 PMCID: PMC2855649 DOI: 10.1021/jo702070m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isotopomers of the ribosomal P-site substrate, the trinucleotide peptide conjugate CCA-pcb (Zhong, M.; Strobel, S. A. Org. Lett. 2006, 8, 55-58), have been designed and synthesized in 26-35 steps. These include individual isotopic substitution at the alpha-hydrogen, carbonyl carbon, and carbonyl oxygen of the amino acid, the O2' and O3' of the adenosine, and a remote label in the N3 and N4 of both cytidines. These isotopomers were synthesized by coupling cytidylyl-(3',5')-cytidine phosphoramidite isotopomers as the common synthetic intermediates, with isotopically substituted A-Phe-cap-biotin (A-pcb). The isotopic enrichment is higher than 99% for 1-13C (Phe), 2-2H (Phe), and 3,4-15N2 (cytidine), 93% for 2'/3'-18 O (adenosine), and 64% for 1-18 O (Phe). A new synthesis of highly enriched [1-18 O2]phenylalanine has been developed. The synthesis of [3'-18 O]adenosine was improved by Lewis acid aided regioselective ring opening of the epoxide and by an economical SN2-SN2 method with high isotopic enrichment (93%). Such substrates are valuable for studies of the ribosomal peptidyl transferase reaction by complete kinetic isotope effect analysis and of other biological processes catalyzed by nucleic acid related enzymes, including polymerases, reverse transcriptases, ligases, nucleases, and ribozymes.
Collapse
Affiliation(s)
- Minghong Zhong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114
| |
Collapse
|
12
|
Cao H, Wang Y. Collisionally activated dissociation of protonated 2'-deoxycytidine, 2'-deoxyuridine, and their oxidatively damaged derivatives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1335-1341. [PMID: 16872831 DOI: 10.1016/j.jasms.2006.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 05/11/2023]
Abstract
We examined the collisionally activated dissociation (CAD) pathways of protonated 2'-deoxycytidine (dC), 5-formyl-2'-deoxycytidine (5-FmdC), 5-hydroxy-2'-deoxycytidine (5-OHdC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), and their corresponding stable isotope-labeled compounds to gain insights into the effects of modifications on the fragmentation pathways of the pyrimidine bases. Multi-stage MS (MSn) results showed that protonated cytosine, its 5-hydroxyl- and 5-hydroxymethyl-substituted derivatives, but not its 5-formyl-substituted analog, could undergo Dimroth-like rearrangement in the gas-phase. The elimination of HNCO was one of the major fragmentation pathways observed for the protonated ions of all dC derivatives except for 5-hydroxymethylcytosine, which underwent this loss only after a H2O molecule had been eliminated. In addition, the protonated cytosine and 5-hydroxycytosine can undergo a facile elimination of NH3 molecule. This loss, however, was not observed for protonated 5-hydroxymethylcytosine, 5-formylcytosine, and their uracil analogs. Taken together, our study demonstrated that modifications could alter markedly the CAD patterns of the protonated pyrimidine bases. The results from this study provided a basis for the identifications of other modified pyrimidine bases/nucleosides by tandem mass spectrometry.
Collapse
Affiliation(s)
- Huachuan Cao
- Department of Chemistry, University of California, 92521-0403, Riverside, CA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, 92521-0403, Riverside, CA, USA.
| |
Collapse
|
13
|
Kamaike K, Kayama Y, Mitsuhisa I, Etsuko K. Efficient synthesis of [2-15N]guanosine and 2'-deoxy[2'-15N]guanosine derivatives using N-(tert-butyldimethylsilyl)[15N]phthalimide as a 15N-labeling reagent. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:29-35. [PMID: 16440983 DOI: 10.1080/15257770500377771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nucleophilic aromatic substitution of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-6-chloro-2-fluoro-9H-purine with N-(tert-butyldimethylsilyl) [15N]phthalimide in the presence of a catalytic amount of CsF at room temperature in DMF efficiently afforded the 6-chloro-2-[15N]phthalimidopurine derivative, which was subsequently converted to the [2-15N]guanosine derivative. The 2'-deoxy[2'-15N]guanosine derivative was also efficiently synthesized through a similar procedure.
Collapse
Affiliation(s)
- Kazuo Kamaike
- School of Pharmarcy, Tokyo University of Pharmarcy and Life Sciences, Hachioji, Tokyo, Japan.
| | | | | | | |
Collapse
|