1
|
Kong X, Ren J, Li J, Liu Y, Li K. Modular Synthesis of α-Aryl-α-Heteroaryl α-Amino Acid Derivatives via a Copper-Catalyzed Cross-Dehydrogenative-Coupling Reaction Using Air as the Sole Oxidant. Org Lett 2023; 25:7073-7077. [PMID: 37767976 DOI: 10.1021/acs.orglett.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A novel copper-catalyzed cross-dehydrogenative-coupling (CDC) process of arylglycine derivatives with N-heteroarenes for the straightforward synthesis of α-aryl-α-heteroaryl α-amino acid scaffolds has been successfully developed. This protocol exhibits a broad substrate scope with good functional group compatibility by utilizing air as the sole oxidant. The use of the reaction is also displayed through the late-stage functionalization of arylglycines bearing natural compounds or drug motifs.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jing Ren
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jinlong Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Yu Liu
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Kaizhi Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| |
Collapse
|
2
|
Laviós A, Martínez-Pardo P, Sanz-Marco A, Vila C, Pedro JR, Blay G. Synthesis of α,α-Diaryl-α-amino Acid Precursors by Reaction of Isocyanoacetate Esters with o-Quinone Diimides. Org Lett 2023; 25:5608-5612. [PMID: 37486803 PMCID: PMC10853967 DOI: 10.1021/acs.orglett.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 07/26/2023]
Abstract
A novel procedure for the synthesis of α,α-diaryl-α-amino acid derivatives has been developed. Silver oxide catalyzes the conjugate addition of α-aryl isocyanoacetates to o-quinone diimide, affording the corresponding α,α-diarylisocyano esters in excellent yields and regioselectivities in short reaction times. Acid hydrolysis of the isocyano group provides the corresponding amino acids bearing a diarylated tetrasubstituted carbon atom. The reaction is also amenable to the synthesis of α-alkyl-α-arylisocyano esters, while the reaction with 3-hydroxy o-quinone diimides provides 4H-benzo[e][1,3]oxazines via a conjugate addition/cyclization process.
Collapse
Affiliation(s)
- Adrián Laviós
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Pablo Martínez-Pardo
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Amparo Sanz-Marco
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| |
Collapse
|
3
|
Calcatelli A, Denton RM, Ball LT. Modular Synthesis of α,α-Diaryl α-Amino Esters via Bi(V)-Mediated Arylation/S N2-Displacement of Kukhtin–Ramirez Intermediates. Org Lett 2022; 24:8002-8007. [PMID: 36278869 PMCID: PMC9641671 DOI: 10.1021/acs.orglett.2c03201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a concise and modular approach to α,α-diaryl
α-amino esters from readily available α-keto esters. This
mild, one-pot protocol proceeds via ketone umpolung, with in situ formation of a Kukhtin–Ramirez intermediate
preceding sequential electrophilic arylation by Bi(V) and SN2 displacement by an amine. The methodology is compatible with a
wide range of anilines and primary amines - including derivatives
of drugs and proteinogenic amino acids - Bi(V) arylating agents, and
α-keto ester substrates.
Collapse
Affiliation(s)
| | - Ross M. Denton
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Liam T. Ball
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
4
|
Wałęsa R, Broda MA. The influence of solvent on conformational properties of peptides with Aib residue-a DFT study. J Mol Model 2017; 23:349. [PMID: 29164349 PMCID: PMC5698364 DOI: 10.1007/s00894-017-3508-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Abstract
The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C5 and C7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.
Collapse
Affiliation(s)
- Roksana Wałęsa
- Faculty of Chemistry, University of Opole, 48, Oleska St., 45-052 Opole, Poland
| | - Małgorzata A. Broda
- Faculty of Chemistry, University of Opole, 48, Oleska St., 45-052 Opole, Poland
| |
Collapse
|
5
|
Peggion C, Moretto A, Formaggio F, Crisma M, Toniolo C. Multiple, consecutive, fully-extended 2.0₅-helix peptide conformation. Biopolymers 2016; 100:621-36. [PMID: 23893391 DOI: 10.1002/bip.22267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 02/01/2023]
Abstract
The peptide 2.0(5)-helix does exist. It has been experimentally authenticated both in the crystalline state (by X-ray diffraction) and in solution (by several spectroscopic techniques). It is the most common conformation for C(α)-tetrasubstituted α-amino acids with at least two atoms in each side chain, provided that cyclization on the C(α)-atom is absent. X-Ray diffraction has allowed a detailed description of its geometrical and three-dimensional (3D)-structural features. The infrared absorption and the nuclear magnetic resonance parameters characteristics of this multiple, consecutive, fully-extended structure have been described. Conformational energy calculations are in agreement with the experimental findings. As the contribution per amino acid residue to the length of this helix is the longest possible, its exploitation as a molecular spacer is quite promising. However, it is a rather fragile 3D-structure and particularly sensitive to solvent polarity. Interestingly, in such a case, it may reversibly convert to the much shorter 3(10)-helix, thus generating an attractive molecular spring.
Collapse
Affiliation(s)
- Cristina Peggion
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | | | | | | | | |
Collapse
|
6
|
Castro TG, Micaêlo NM. Conformational and thermodynamic properties of non-canonical α,α-dialkyl glycines in the peptaibol Alamethicin: molecular dynamics studies. J Phys Chem B 2014; 118:9861-70. [PMID: 25091499 DOI: 10.1021/jp505400q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics. To test this hypothesis, new peptidomimetics of Alamethicin were constructed by replacing the native Aib positions of Alamethicin by one or more new α,α-dialkyl glycines. Dhg and Ac6c demonstrated the capacity to induce well-defined α-helical structures. Dhg and Ac6c also promote the thermodynamic stabilization of these peptides in a POPC model membrane and are better alternatives to the Aib in Alamethicin. These noncanonical amino acids also improved secondary structure properties, revealing preorganization in water and maintenance of α helical structure in POPC. We show that it is possible to optimize the helicity and thermodynamic properties of native Alamethicin, and we suggest that these amino acids could be incorporated in other peptides with similar structural effect.
Collapse
Affiliation(s)
- Tarsila G Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho , Largo do Paço, Braga 4704-553, Portugal
| | | |
Collapse
|
7
|
Torras J, Warren JG, Revilla-López G, Jiménez AI, Cativiela C, Alemán C. Solvent-induced conformational flexibility of a bicyclic proline analogue: Octahydroindole-2-carboxylic acid. Biopolymers 2014; 102:176-90. [PMID: 24458264 DOI: 10.1002/bip.22465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 11/08/2022]
Abstract
The conformational preferences of the N-acetyl-N'-methylamide derivatives of the four octahydroindole-2-carboxylic acid (Oic) stereoisomers have been investigated in the gas-phase and in aqueous solution using quantum mechanical calculations. In addition to the conformational effects provoked by the stereochemical diversity of Oic, which presents three chiral centers, results provide evidence of interesting and rather unusual features. The conformational preferences of the Oic stereoisomers in solution are only well described by applying a complete and systematic search process, results achieved by simple re-optimization of the gas-phase minima being very imprecise. This is because the conformational rigidity detected in the gas-phase, which is imposed by the chemical restrictions of the fused bicyclic skeleton, disappears in aqueous solution, the four stereoisomers behaving as flexible molecules in this environment. Thus, in general, the γ-turn is the only minimum energy conformation in the gas-phase while in aqueous solution the helical, polyproline-II and γ-turn motifs are energetically favored. Molecular dynamics simulations indicate that the conformational flexibility predicted by quantum mechanical calculations for the four Oic stereoisomers in solution is satisfactorily reproduced by classical force-fields.
Collapse
Affiliation(s)
- Juan Torras
- Departament d'Enginyeria Química, EEI, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada, 08700, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Castro TG, Micaêlo NM. Modeling of Peptaibol Analogues Incorporating Nonpolar α,α-Dialkyl Glycines Shows Improved α-Helical Preorganization and Spontaneous Membrane Permeation. J Phys Chem B 2014; 118:649-58. [DOI: 10.1021/jp4074587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tarsila G. Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M. Micaêlo
- Departamento de Química, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Fabregat G, Ballano G, Casanovas J, Laurent AD, Armelin E, del Valle LJ, Cativiela C, Jacquemin D, Alemán C. Design of hybrid conjugates based on chemical similarity. RSC Adv 2013. [DOI: 10.1039/c3ra42191k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Casanovas J, Revilla-López G, Crisma M, Toniolo C, Alemán C. Factors Governing the Conformational Tendencies of Cα-Ethylated α-Amino Acids: Chirality and Side-Chain Size Effects. J Phys Chem B 2012; 116:13297-307. [DOI: 10.1021/jp3045115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordi Casanovas
- Departament
de Química, Escola Politècnica Superior, Universitat de Lleida, 25001 Lleida, Spain
| | - Guillermo Revilla-López
- Departament d’Enginyeria Química,
E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, 08028
Barcelona, Spain
| | - Marco Crisma
- ICB, Padova
Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- ICB, Padova
Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Carlos Alemán
- Departament d’Enginyeria Química,
E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, 08028
Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Zanuy D, Hamley IW, Alemán C. Modeling the Tetraphenylalanine-PEG Hybrid Amphiphile: From DFT Calculations on the Peptide to Molecular Dynamics Simulations on the Conjugate. J Phys Chem B 2011; 115:8937-46. [DOI: 10.1021/jp2031187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ian W. Hamley
- School of Chemistry, Food Science and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C′, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
12
|
Revilla-López G, Laurent AD, Perpète EA, Jacquemin D, Torras J, Assfeld X, Alemán C. Key Building Block of Photoresponsive Biomimetic Systems. J Phys Chem B 2011; 115:1232-42. [DOI: 10.1021/jp108341a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Adele D. Laurent
- Chimie et Biochimie Théoriques, UMR CNRS UHP 7565, Institut Jean Barriol FR CNRS 2843, Faculté des Sciences et Techniques BP 70239, Nancy-Université, 54506 Vandoeuvre-lès-Nancy, France
| | - Eric A. Perpète
- Unité de Chimie Physique Théorique et Structurale (2742), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Denis Jacquemin
- Unité de Chimie Physique Théorique et Structurale (2742), Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Juan Torras
- Departament d’Enginyeria Química, EUETII, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada 08700, Spain
| | - Xavier Assfeld
- Chimie et Biochimie Théoriques, UMR CNRS UHP 7565, Institut Jean Barriol FR CNRS 2843, Faculté des Sciences et Techniques BP 70239, Nancy-Université, 54506 Vandoeuvre-lès-Nancy, France
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
13
|
Revilla-López G, Jiménez AI, Cativiela C, Nussinov R, Alemán C, Zanuy D. Conformational profile of a proline-arginine hybrid. J Chem Inf Model 2010; 50:1781-9. [PMID: 20886854 PMCID: PMC2997958 DOI: 10.1021/ci100135f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrinsic conformational preferences of a new nonproteinogenic amino acid have been explored by computational methods. This tailored molecule, named ((β)Pro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the C(β) position of the five-membered pyrrolidine ring, in either a cis or a trans orientation with respect to the carboxylic acid. The conformational profiles of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of ((β)Pro)Arg have been examined in the gas phase and in solution by B3LYP/6-31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen bonds. Thus, both cis- and trans-((β)Pro)Arg exhibit a preference for the α(L) conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups.
Collapse
Affiliation(s)
- Guillermo Revilla-López
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza–CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza–CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| |
Collapse
|
14
|
Hamley IW, Brown GD, Castelletto V, Cheng G, Venanzi M, Caruso M, Placidi E, Aleman C, Revilla-López G, Zanuy D. Self-Assembly of a Designed Amyloid Peptide Containing the Functional Thienylalanine Unit. J Phys Chem B 2010; 114:10674-83. [DOI: 10.1021/jp105508g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I. W. Hamley
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - G. D. Brown
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - V. Castelletto
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - G. Cheng
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - M. Venanzi
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - M. Caruso
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - E. Placidi
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - C. Aleman
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - G. Revilla-López
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| | - D. Zanuy
- School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K., Department of Chemical Sciences and Technologies, CNR, Department of Physics, University of Rome Tor Vergata, Via Ricerca Scientifica 1, Rome, Italy, Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain, and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici
| |
Collapse
|
15
|
Revilla-López G, Torras J, Curcó D, Casanovas J, Calaza MI, Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Grodzinski P, Alemán C. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids. J Phys Chem B 2010; 114:7413-22. [PMID: 20455555 PMCID: PMC2896893 DOI: 10.1021/jp102092m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids--also called non-coded, non-canonical, or non-standard--is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized, and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, alpha-tetrasubstituted alpha-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EUETII, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada 08700, Spain
| | - David Curcó
- Departament d’Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain
| | - Jordi Casanovas
- Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/ Jaume II n°69, Lleida E-25001, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Piotr Grodzinski
- Alliance for Nanotechnology in Cancer, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
16
|
Rodríguez-Ropero F, Zanuy D, Assfeld X, Alemán C. Modeling an electronic conductor based on natural peptide sequences. Biomacromolecules 2009; 10:2338-43. [PMID: 19603792 DOI: 10.1021/bm900524v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we used quantum mechanical calculations, molecular dynamics simulations, and QM/MM methods to examine the formation of a pi-stacking ladder and the existence of charge transfer processes in a tubular nanostructure constructed using protein building blocks. Initially, the conformational properties of beta-3-thienylalanine, a synthetic amino acid with an aromatic side group, were studied using quantum mechanical calculations. Next, this amino acid was used to substitute the natural residues at selected positions of the nanotube. Molecular dynamics simulations showed that a rational design of the targeted replacements enhances the stability of the tubular nanostructure and forms a pi-stacking ladder in the inner core of the tube. Finally, QM/MM calculations on the oxidized nanotube evidenced the delocalization of the pi-electron deficiency between the thienyl side groups of the different synthetic residues. The overall results reflected that the system under study is a potential candidate to be used as a nanowire.
Collapse
Affiliation(s)
- Francisco Rodríguez-Ropero
- Departament d'Enginyeria Quimica, ETS d'Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Barcelona E-08028, Spain.
| | | | | | | |
Collapse
|
17
|
Zanuy D, Flores-Ortega A, Jiménez AI, Calaza MI, Cativiela C, Nussinov R, Ruoslahti E, Alemán C. In silico molecular engineering for a targeted replacement in a tumor-homing peptide. J Phys Chem B 2009; 113:7879-89. [PMID: 19432404 PMCID: PMC2734192 DOI: 10.1021/jp9006119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and molecular dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone...backbone and side-chain...side-chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptides exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu, and Lys side chains face the same side of the molecule, which is considered important for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Alejandra Flores-Ortega
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erkki Ruoslahti
- Vascular Mapping Center, The Burnham Institute for Medical Research at UCSB, Santa Barbara, California 93106, USA
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Carlos Alemán
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
18
|
Song Z, Gao H, Li G, Yu Y, Shi Z, Feng S. Influence of noncovalent intermolecular interactions on crystal packing: syntheses and crystal structures of three layered Zn(ii)/1,2,4-triazole/carboxylate coordination polymers. CrystEngComm 2009. [DOI: 10.1039/b901445d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Casanovas J, Nussinov R, Alemán C. Intrinsic conformational preferences of C(alpha,alpha)-dibenzylglycine. J Org Chem 2008; 73:4205-11. [PMID: 18465898 DOI: 10.1021/jo8005528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intrinsic conformational preferences of C (alpha,alpha)-dibenzylglycine, a symmetric alpha,alpha-dialkylated amino acid bearing two benzyl substituents on the alpha-carbon atom, have been determined using quantum chemical calculations at the B3LYP/6-31+G(d,p) level. A total of 46 minimum energy conformations were found for the N-acetyl- N'-methylamide derivative, even though only nine of them showed a relative energy lower than 5.0 kcal/mol. The latter involves C 7, C 5, and alpha' backbone conformations stabilized by intramolecular hydrogen bonds and/or N-H...pi interactions. Calculation of the conformational free energies in different environments (gas-phase, carbon tetrachloride, chloroform, methanol, and water solutions) indicates that four different minima (two C 5 and two C 7) are energetically accessible at room temperature in the gas phase, while in methanol and aqueous solutions one such minimum (C 5) becomes the only significant conformation. Comparison with results recently reported for C (alpha,alpha)-diphenylglycine indicates that substitution of phenyl side groups by benzyl enhances the conformational flexibility leading to (i) a reduction of the strain of the peptide backbone and (ii) alleviating the repulsive interactions between the pi electron density of the phenyl groups and the lone pairs of the carbonyl oxygen atoms.
Collapse
Affiliation(s)
- Jordi Casanovas
- Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/Jaume II no. 69, Lleida, Spain.
| | | | | |
Collapse
|
20
|
Casanovas J, Jiménez AI, Cativiela C, Nussinov R, Alemán C. 1-amino-2-phenylcyclopentane-1-carboxylic acid: a conformationally restricted phenylalanine analogue. J Org Chem 2007; 73:644-51. [PMID: 18081347 DOI: 10.1021/jo702107s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DFT calculations at the B3LYP/6-311G(d,p) level have been used to investigate the intrinsic conformational preferences of 1-amino-2-phenylcyclopentane-1-carboxylic acid (c5Phe), a constrained analogue of phenylalanine in which the alpha and beta carbons are included in a cyclopentane ring. Specifically, the N-acetyl-N'-methylamide derivatives of the cis and trans stereoisomers, where cis and trans refer to the relative position between the amino group and the phenyl ring, have been calculated. Solvent effects have been examined using a self-consistent reaction field (SCRF) method. Results indicate that the conformational space of the cis stereoisomer is much more restricted than that of the trans derivative both in the gas phase and in solution.
Collapse
Affiliation(s)
- Jordi Casanovas
- Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001, Spain.
| | | | | | | | | |
Collapse
|
21
|
Zanuy D, Rodríguez-Ropero F, Nussinov R, Alemán C. Testing β-helix terminal coils stability by targeted substitutions with non-proteogenic amino acids: A molecular dynamics study. J Struct Biol 2007; 160:177-89. [PMID: 17897839 DOI: 10.1016/j.jsb.2007.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 11/20/2022]
Abstract
The search for new building block templates useful for nanostructures design, targets protein motifs with a wide range of structures. Stabilizing these building blocks when extracted from their natural environment becomes a fundamental goal in order to successfully control their assembly. Targeted replacements of natural residues by conformationally constrained amino acids were shown to be a successful strategy to achieve such stabilization. In this work, the effect of replacing natural amino acids by non-proteogenic residues in a beta-helix building block has been evaluated using extensive molecular dynamics simulations. Here, we focus on systematic substitutions of valine residues present in beta-sheet segments of a beta-helical building block excised from Escherichia coli galactoside acetyltransferase, residues 131-165. Four different types of non-proteogenic amino acids have been considered for substitution: (i) one dehydroamino acid, (ii) two d-amino acids, (iii) one beta-amino acid and (iv) two alpha,alpha-dialkylamino acids. Our results indicate that the ability of non-proteogenic amino acids to stabilize small building block motifs is site-dependent. We conclude that if the replacement does not alter the energy balance between attractive non-covalent interactions and steric hindrance, synthetic residues are suitable candidates to nucleate beta-helix formation.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain.
| | | | | | | |
Collapse
|