1
|
Majhi B, Bora A, Palit S, Dev S, Majumdar P, Dutta S. Metal-free internal nucleophile-triggered domino route for synthesis of fused quinoxaline [1,4]-diazepine hybrids and the evaluation of their DNA binding properties. Bioorg Chem 2024; 151:107694. [PMID: 39151388 DOI: 10.1016/j.bioorg.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SNAr followed by an internal nucleophile-triggered intramolecular SNAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position. Interestingly, compound 11f containing the N-1 benzyl substitution demonstrated significant DNA binding (KBH ∼ 2.15 ± 0.25 × 104 M-1 and Ksv ∼ 12.6 ± 1.41 × 103 M-1) accompanied by a bathochromic shift (Δλ ∼ 5 nm). In silico studies indicated possible binding of diazepine hybrid 11f at the GC-rich major groove in the ct-DNA hexamer duplex and showed comparable binding energies to that of ethidium bromide. The antiproliferative activity of compounds was observed in the given order in different cell lines: (HeLa > HT29 > SKOV 3 > HCT116 > HEK293). Lead compound 11f demonstrated maximum cytotoxicity (IC50 value of 13.30 μM) in HeLa cell lines and also caused early apoptosis-mediated cell death in cancer cell lines. We envision that our work will offer newer methodologies for the construction of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine class of molecules.
Collapse
Affiliation(s)
- Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Achyut Bora
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samrat Dev
- Mrinalini Dutta Mahavidyapith, Vidyapith Rd, Pratiraksha Nagar, Kolkata 700051, India
| | - Papiya Majumdar
- Department of Chemistry, Sister Nivedita University, DG 1/2, Newtown, Kolkata 700156, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Chen L, Zhang M, Liu M, Liu Z, Qiu Y, Zhang Z, Yu F, Huang J. Rh(III)-catalyzed selective mono- and dual-functionalization/cyclization of 1-aryl-5-aminopyrazoles with iodonium ylides. Chem Commun (Camb) 2024; 60:432-435. [PMID: 38086626 DOI: 10.1039/d3cc05266d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An efficient Rh(III)-catalyzed selective mono- and dual-C-H bond functionalization/cyclization with iodonium ylide as a single coupling partner was demonstrated, in which fused benzodiazepine skeletons were obtained in excellent yields. This method greatly improved an effective approach to dual C-H unsymmetrical functionalization.
Collapse
Affiliation(s)
- Longkun Chen
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Meichen Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Yuetong Qiu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhilai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
3
|
Malki Y, Maillard LT, Masurier N. 1,3‐Diazepine Derivatives: Strategies for Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yohan Malki
- IBMM Université de Montpellier CNRS ENSCM Montpellier France
| | | | | |
Collapse
|
4
|
Luo L, Tang J, Sun R, Li W, Zheng X, Yuan M, Li R, Chen H, Fu H. Direct C-H Sulfonylimination of Pyridinium Salts. Org Lett 2022; 24:2821-2825. [PMID: 35405076 DOI: 10.1021/acs.orglett.2c00725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct pyridinium C-H sulfonylimination has been developed for the synthesis of sulfonyl iminopyridine derivatives with high efficiency. This transformation features the direct and efficient formation of a C═N bond with a high functional group tolerance under metal-free conditions. The spectroscopic properties potentially enable these sulfonyl iminopyridine compounds to be useful new emitting materials.
Collapse
Affiliation(s)
- Lihua Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Juan Tang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Rui Sun
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Wenjing Li
- Xi'an Medical University, Xi'an, Shaanxi 710021, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Maoling Yuan
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
5
|
Wang QD, Wang YW, Xie T, Cui YY, Ma M, Shen ZL, Chu XQ. Three-Component Bisannulation for the Synthesis of Trifluoromethylated Tetracyclic Aza-Aromatics through Six C(sp 3)-F Bond Cleavage and Four C-N Bond Formation. J Org Chem 2021; 86:8236-8247. [PMID: 34061530 DOI: 10.1021/acs.joc.1c00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented and expeditious tandem bisannulation of polyfluoroalkylated tetralones with benzamidines to access various fluoroalkyl tetracyclic [1,3]-diazepines through multiple C-N bond formation and C(sp3)-F bond cleavage is reported. The process features high regio-/chemoselectivities, broad substrate scope, good functional group tolerance, procedural simplicity, mild reaction conditions, and scale-up synthesis. Mechanistic studies showed that the distinctive fluorine effect of polyfluoroalkyl tetralone plays a vital role for the aza-tetracycle construction.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.,School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Ya-Wen Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ting Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Baccon-Sollier PL, Malki Y, Maye M, Ali LMA, Lichon L, Cuq P, Vincent LA, Masurier N. Imidazopyridine-fused [1,3]diazepinones: modulations of positions 2 to 4 and their impacts on the anti-melanoma activity. J Enzyme Inhib Med Chem 2020; 35:935-949. [PMID: 32249633 PMCID: PMC7170309 DOI: 10.1080/14756366.2020.1748024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A series of 19 novel pyrido-imidazodiazepinones, with modulations of positions 2, 3 and 4 of the diazepine ring were synthesised and screened for their in vitro cytotoxic activities against two melanoma cell lines (A375 and MDA-MB-435) and for their potential toxicity against NIH-3T3 non-cancerous cells. Selected compounds were also evaluated on the NCI-60 cell line panel. The SAR study revealed that the molecular volume and the cLogP of compounds modified at position 2 were significantly correlated with the activity of these compounds on melanoma cell lines. Moreover, introduction of a heterocyclic group at position 2 or an azido-alkyl chain at position 4 led to compounds displaying a significantly different activity profile on the NCI-60 cell line panel, compared to phenyl-substituted compounds at position 2 of the diazepinone. This study provides us crucial information for the development of new derivatives active against melanoma.
Collapse
Affiliation(s)
- Paul Le Baccon-Sollier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Morgane Maye
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| |
Collapse
|
7
|
Doufène K, Malki Y, Vincent LA, Cuq P, Devoisselle JM, Masurier N, Aubert-Pouëssel A. Vegetable Oil-based Hybrid Submicron Particles Loaded with JMV5038: A Promising Formulation against Melanoma. J Pharm Sci 2020; 110:1197-1205. [PMID: 33069708 DOI: 10.1016/j.xphs.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.
Collapse
Affiliation(s)
- Koceïla Doufène
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Anne Aubert-Pouëssel
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
8
|
Berger F, Alvarez EM, Frank N, Bohdan K, Kondratiuk M, Torkowski L, Engl PS, Barletta J, Ritter T. Cine-Substitutions at Five-Membered Hetarenes Enabled by Sulfonium Salts. Org Lett 2020; 22:5671-5674. [PMID: 32640160 PMCID: PMC7467811 DOI: 10.1021/acs.orglett.0c02067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report a nucleophilic
substitution reaction of five-membered
hetarylsulfonium salts that results in a change of the substitution
pattern on the arene. The products of these cine-substitutions
are hard to access synthetically otherwise. The sulfonium salts that
serve as starting materials are generated by a highly site-selective
C–H functionalization reaction.
Collapse
Affiliation(s)
- Florian Berger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Eva Maria Alvarez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Nils Frank
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Mykhailo Kondratiuk
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Luca Torkowski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Pascal S Engl
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Joana Barletta
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Ning Y, He X, Zuo Y, Wang J, Tang Q, Xie M, Li R, Shang Y. Rh-Catalyzed C-H activation/intramolecular condensation for the construction of benzo[f]pyrazolo[1,5-a][1,3]diazepines. Org Biomol Chem 2020; 18:2893-2901. [PMID: 32236225 DOI: 10.1039/d0ob00382d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel and mild Rh(iii)-catalyzed C-H activation/intramolecular condensation of 1-aryl-1H-pyrazol-5-amines with cyclic 2-diazo-1,3-diketones was developed, giving access to various important benzo[f]pyrazolo[1,5-a][1,3]diazepine scaffolds through sequential C-C/C-N bond formation in a one-pot procedure under additive- and oxidant-free conditions. Furthermore, 3-([1,1'-biphenyl]-2-ylamino)-2-ethoxycyclohex-2-enones can be obtained in good yields by constructing C-O and C-N bonds through 1,1'-insertion, dehydration, and isomerization processes.
Collapse
Affiliation(s)
- Yi Ning
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
10
|
Tzani M, Kallitsakis MG, Symeonidis TS, Lykakis IN. Alumina-Supported Gold Nanoparticles as a Bifunctional Catalyst for the Synthesis of 2-Amino-3-arylimidazo[1,2- a]pyridines. ACS OMEGA 2018; 3:17947-17956. [PMID: 31458387 PMCID: PMC6643465 DOI: 10.1021/acsomega.8b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 05/31/2023]
Abstract
The bifunctional catalytic efficacy of alumina-supported gold nanoparticles (Au/Al2O3) was investigated for the synthesis of a series of 2-amino-3-aryl-imidazopyridines through the chemoselective reduction of the corresponding 2-nitro-3-aryl-imidazo[1,2-a]pyridines in high isolated yields. This highly efficient protocol was initially applied for the synthesis of 2-nitro-3-aryl imidazo[1,2-a]pyridines via the reaction between 2-aminopyridine and nitroalkenes catalyzed by the present catalytic system Au/Al2O3. Moreover, the heterogeneous surface γ-Al2O3 was also found to catalyze this pathway in a comparable manner. However, only Au/Al2O3 was further proved as the appropriate catalytic system for the selective transfer hydrogenation of the synthesized 2-nitro imidazopyridine derivatives into the corresponding 2-amino-3-aryl imidazo[1,2-a]pyridines using NaBH4 as a hydrogen-donor molecule. In addition, the one-pot two-step reaction between nitroalkenes and aminopyridines in the presence of Au/Al2O3-NaBH4 provided directly the fast and facile synthesis of 2-amino-3-aryl imidazopyridines, highlighting a useful synthetic application of the catalytic protocol.
Collapse
|
11
|
Montanaro S, Wright IA, Batsanov AS, Bryce MR. Synthesis of Tetracyclic 2,3-Dihydro-1,3-diazepines from a Dinitrodibenzothiophene Derivative. J Org Chem 2018; 83:12320-12326. [PMID: 30247912 DOI: 10.1021/acs.joc.8b02029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triply fused 1,3-diazepine derivatives have been obtained by acidic reduction of rotationally locked and sterically hindered nitro groups in the presence of an aldehyde or ketone. The nitro groups are sited on adjacent rings of a dicyanodibenzothiophene-5,5-dioxide, which also displays fully reversible two-electron-accepting behavior. The synthesis, crystallographically determined molecular structures, and aspects of the electronic properties of these new molecules are presented.
Collapse
Affiliation(s)
- Stephanie Montanaro
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom.,Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Iain A Wright
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Andrei S Batsanov
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| | - Martin R Bryce
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| |
Collapse
|
12
|
|
13
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
14
|
Novel family of fused tricyclic [1,4]diazepines: Design, synthesis, crystal structures and molecular docking studies. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Sultana F, Shaik SP, Alarifi A, Srivastava AK, Kamal A. Transition-Metal-Free Oxidative Cross-Coupling of Methylhetarenes with Imidazoheterocycles towards Efficient C(sp2
)−H Carbonylation. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad- 500007 India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad- 500007 India
- Chemical Sciences Division; Academy of Scientific & Innovative Research (AcSIR); New Delhi- 110025 India
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Ajay Kumar Srivastava
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad- 500007 India
- Chemical Sciences Division; Academy of Scientific & Innovative Research (AcSIR); New Delhi- 110025 India
- Current Address: Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension; Sitapur Road Lucknow- 226031 India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad- 500007 India
- Chemical Sciences Division; Academy of Scientific & Innovative Research (AcSIR); New Delhi- 110025 India
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
16
|
Bellet V, Lichon L, Arama DP, Gallud A, Lisowski V, Maillard LT, Garcia M, Martinez J, Masurier N. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells. Eur J Med Chem 2017; 125:1225-1234. [DOI: 10.1016/j.ejmech.2016.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
|
17
|
Tian X, Song L, Wang M, Lv Z, Wu J, Yu W, Chang J. Synthesis of Novel Imidazo[1,2‐
a
]pyridin‐2‐amines from Arylamines and Nitriles via Sequential Addition and I
2
/KI‐Mediated Oxidative Cyclization. Chemistry 2016; 22:7617-22. [DOI: 10.1002/chem.201600849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xianhai Tian
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lina Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Manman Wang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhigang Lv
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jie Wu
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Henan Province Zhengzhou 450001 P. R. China
| |
Collapse
|
18
|
Manvar P, Shaikh F, Kakadiya R, Mehariya K, Khunt R, Pandey B, Shah A. Synthesis of novel imidazo[1,2-a]pyridine-4-hydroxy-2H-coumarins by Groebke–Blackburn–Bienaymé multicomponent reaction as potential NS5B inhibitors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Denoyelle S, Tambutet G, Masurier N, Maillard LT, Martinez J, Lisowski V. Synthesis of Thieno[3,2-e][1,4]diazepin-2-ones: Application of an Uncatalysed Pictet-Spengler Reaction. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Arama DP, Soualmia F, Lisowski V, Longevial JF, Bosc E, Maillard LT, Martinez J, Masurier N, El Amri C. Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur J Med Chem 2015; 93:202-13. [PMID: 25682203 DOI: 10.1016/j.ejmech.2015.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
The human tissue kallikrein-7 (KLK7) is a chymotryptic serine protease member of tissue kallikrein family. KLK7 is involved in skin homeostasis and inflammation. Excess of KLK7 activity is also associated with tumor metastasis processes, especially in ovarian carcinomas, prostatic and pancreatic cancers. Development of Kallikrein 7 inhibitors is thus of great interest in oncology but also for treating skin diseases. Most of the developed synthetic inhibitors present several drawbacks such as poor selectivity and unsuitable physico-chemical properties for in vivo use. Recently, we described a practical sequence for the synthesis of imidazopyridine-fused [1,3]-diazepines. Here, we report the identification of pyrido-imidazodiazepinone core as a new potential scaffold to develop selective and competitive inhibitors of kallikrein-related peptidase 7. Structure-activity relationships (SAR), inhibition mechanisms and selectivity as well as cytotoxicity against selected cancer cell lines were investigated.
Collapse
Affiliation(s)
- Dominique P Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Feryel Soualmia
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Elodie Bosc
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France.
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France.
| |
Collapse
|
21
|
Chandrasekhara Rao L, Satish Kumar N, Meshram HM. Microwave assisted novel and regioselective functionalization of imidazopyridines with chromene acetals and β-nitrostyrenes. RSC Adv 2015. [DOI: 10.1039/c5ra14674g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile synthesis of novel functionalized imidazopyridines has been accomplished through the condensation of imidazopyridines with chromene hemiacetals or β-nitro styrenes with high regioselectivity and excellent yields in the presence of a catalytic amount of PTSA or InCl3.
Collapse
Affiliation(s)
- L. Chandrasekhara Rao
- Medicinal Chemisty and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500 007
- India
| | - N. Satish Kumar
- Medicinal Chemisty and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500 007
- India
| | - H. M. Meshram
- Medicinal Chemisty and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500 007
- India
| |
Collapse
|
22
|
Synthesis of imidazo[1,2-a]pyridin-chromones by a MW assisted Groebke–Blackburn–Bienaymé process. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Methanol facilitated synthesis of 7-methoxy-2-thioxo-2,3-dihydro-1H-1,3-diazepin-4(7H)-ones from nitroallylic acetates and thiourea. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Imidazopyridine-fused [1,3]-diazepinones: Synthesis and antiproliferative activity. Eur J Med Chem 2014; 75:382-90. [DOI: 10.1016/j.ejmech.2014.01.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 01/26/2023]
|
25
|
Zhou F, Liu X, Zhang N, Liang Y, Zhang R, Xin X, Dong D. Copper-catalyzed three-component reaction: solvent-controlled regioselective synthesis of 4-amino- and 6-amino-2-iminopyridines. Org Lett 2013; 15:5786-9. [PMID: 24171428 DOI: 10.1021/ol4028368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselective synthesis of multisubstituted 4-amino- and 6-amino-2-iminopyridines has been developed via the copper-catalyzed three-component reaction based on the reaction conditions selection. The reaction of sulfonyl azides, alkynes, and 2-[(amino)methylene]malononitriles catalyzed by copper(I) iodide in tetrahydrofuran at room temperature afforded substituted 4-amino-2-iminopyridines, whereas, in N,N-dimethylformamide at 50 °C under N2, it generated substituted 6-amino-2-iminopyridines as predominant products.
Collapse
Affiliation(s)
- Fenguo Zhou
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China, and School of Chemistry and Environmental Engineering, Changchun University of Science and Technology , Changchun 130022, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Arama DP, Lisowski V, Scarlata E, Fulcrand P, Maillard LT, Martinez J, Masurier N. An efficient synthesis of pyrido-imidazodiazepinediones. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.12.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
|