1
|
Wang X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress of multi-enzyme complexes based on the design of scaffold protein. BIORESOUR BIOPROCESS 2023; 10:72. [PMID: 38647916 PMCID: PMC10992622 DOI: 10.1186/s40643-023-00695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 04/25/2024] Open
Abstract
Multi-enzyme complexes designed based on scaffold proteins are a current topic in molecular enzyme engineering. They have been gradually applied to increase the production of enzyme cascades, thereby achieving effective biosynthetic pathways. This paper reviews the recent progress in the design strategy and application of multi-enzyme complexes. First, the metabolic channels in the multi-enzyme complex have been introduced, and the construction strategies of the multi-enzyme complex emerging in recent years have been summarized. Then, the discovered enzyme cascades related to scaffold proteins are discussed, emphasizing on the influence of the linker on the fusion enzyme (fusion protein) and its possible mechanism. This review is expected to provide a more theoretical basis for the modification of multi-enzyme complexes and broaden their applications in synthetic biology.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Kalita J, Shukla H, Tripathi T. Engineering glutathione S-transferase with a point mutation at conserved F136 residue increases the xenobiotic-metabolizing activity. Int J Biol Macromol 2020; 163:1117-1126. [PMID: 32663558 DOI: 10.1016/j.ijbiomac.2020.07.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes that play major roles in a wide range of biological processes, including cellular detoxification, biosynthesis, metabolism, and transport. The dynamic structural scaffold and diverse functional roles of GSTs make them important for enzyme engineering and for exploring novel biotechnological applications. The present study reported a significant gain-of-function activity in GST caused by a point mutation at the conserved F136 residue. The fluorescence quenching and kinetic data suggested that both binding affinity and catalytic efficiency of the mutant enzyme to the substrates 1-chloro-2,4-dinitrobenzene (CDNB), as well as the glutathione (GSH), is increased. Molecular docking showed that the mutation improves the binding interactions of the GSH with several binding-site residues. The simulation of molecular dynamics revealed that the mutant enzyme gained increased structural rigidity than the wild-type enzyme. The mutation also altered the residue interaction network (RIN) of the GSH-binding residues. These phenomena suggested that mutations led to conformational alterations and dominant differential motions in the enzyme that lead to increased rigidity and modifications in RIN. Collectively, engineering GST with a single point mutation at conserved F136 can significantly increase its xenobiotic activity by increasing the catalytic efficiency that may be exploited for biotechnological applications.
Collapse
Affiliation(s)
- Jupitara Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
3
|
Chronopoulou EG, Papageorgiou AC, Ataya F, Nianiou-Obeidat I, Madesis P, Labrou NE. Expanding the Plant GSTome Through Directed Evolution: DNA Shuffling for the Generation of New Synthetic Enzymes With Engineered Catalytic and Binding Properties. FRONTIERS IN PLANT SCIENCE 2018; 9:1737. [PMID: 30555496 PMCID: PMC6284010 DOI: 10.3389/fpls.2018.01737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Glutathione transferases (GSTs, EC. 2.5.1.18) are inducible multifunctional enzymes that are essential in the detoxification and degradation of toxic compounds. GSTs have considerable biotechnological potential. In the present work, a new method for the generation of synthetic GSTs was developed. Abiotic stress treatment of Phaseolus vulgaris and Glycine max plants led to the induction of total GST activity and allowed the creation of a GST-enriched cDNA library using degenerated GST-specific primers and reverse transcription-PCR. This library was further diversified by employing directed evolution through DNA shuffling. Activity screening of the evolved library led to the identification of a novel tau class GST enzyme (PvGmGSTUG). The enzyme was purified by affinity chromatography, characterized by kinetic analysis, and its structure was determined by X-ray crystallography. Interestingly, PvGmGSTUG displayed enhanced glutathione hydroperoxidase activity, which was significantly greater than that reported so far for natural tau class GSTs. In addition, the enzyme displayed unusual cooperative kinetics toward 1-chloro-2,4-dinitrochlorobenzene (CDNB) but not toward glutathione. The present work provides an easy approach for the simultaneous shuffling of GST genes from different plants, thus allowing the directed evolution of plants GSTome. This may permit the generation of new synthetic enzymes with interesting properties that are valuable in biotechnology.
Collapse
Affiliation(s)
- Evangelia G. Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | | | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Wang X, Guo T, Chen J, Li X, Zhou Y, Pan Z. Covalent and selective immobilization of GST fusion proteins with fluorophosphonate-based probes. Chem Commun (Camb) 2018. [DOI: 10.1039/c7cc08888d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophosphonate probes covalently immobilize proteins onto solid support by reacting with tyrosine 111 in the GST tag.
Collapse
Affiliation(s)
- Xiafeng Wang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Tianlin Guo
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Jiahui Chen
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Xiaofeng Li
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Yiqing Zhou
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| |
Collapse
|
5
|
Axarli I, Muleta AW, Chronopoulou EG, Papageorgiou AC, Labrou NE. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability. Biochim Biophys Acta Gen Subj 2016; 1861:3416-3428. [PMID: 27612661 DOI: 10.1016/j.bbagen.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/28/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Glutathione transferases (GSTs) are a family of detoxification enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic compounds. METHODS A library of alpha class GSTs was constructed by DNA shuffling using the DNA encoding the human glutathione transferase A1-1 (hGSTA1-1) and the rat glutathione transferase A1-1 (rGSTA1-1). RESULTS Activity screening of the library allowed the selection of a chimeric enzyme variant (GSTD4) that displayed high affinity towards GSH and GSH-Sepharose affinity adsorbent, higher kcat/Km and improved thermal stability, compared to the parent enzymes. The crystal structures of the GSTD4 enzyme in free form and in complex with GSH were determined to 1.6Å and 2.3Å resolution, respectively. Analysis of the GSTD4 structure showed subtle conformational changes in the GSH-binding site and in electron-sharing network that may contribute to the increased GSH affinity. The shuffled variant GSTD4 was further optimized for improved oxidative stability employing site-saturation mutagenesis. The Cys112Ser mutation confers optimal oxidative stability and kinetic properties in the GSTD4 enzyme. CONCLUSIONS DNA shuffling allowed the creation of a chimeric enzyme variant with improved properties, compared to the parent enzymes. X-ray crystallography shed light on how recombination of a specific segment from homologous GSTA1-1 together with point mutations gives rise to a new functionally competent enzyme with improved binding, catalytic properties and stability. GENERAL SIGNIFICANCE Such an engineered GST would be useful in biotechnology as affinity tool in affinity chromatography as well as a biocatalytic matrix for the construction of biochips or enzyme biosensors.
Collapse
Affiliation(s)
- Irine Axarli
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Abdi W Muleta
- Turku Centre for Biotechnology, BioCity, University of Turku and Åbo Akademi University, Turku 20521, Finland
| | - Evangelia G Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Anastassios C Papageorgiou
- Turku Centre for Biotechnology, BioCity, University of Turku and Åbo Akademi University, Turku 20521, Finland
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
6
|
Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography. J Chromatogr A 2015; 1425:8-16. [DOI: 10.1016/j.chroma.2015.10.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
|
7
|
Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E. Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 2015; 32:186-194. [PMID: 25614070 DOI: 10.1016/j.copbio.2014.12.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/20/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Glutathione transferases (GSTs) represent a major group of detoxification enzymes. All plants possess multiple cytosolic GSTs, each of which displays distinct catalytic as well as non-catalytic binding properties. The progress made in recent years in the fields of genomics, proteomics and protein crystallography of GSTs, coupled with studies on their molecular evolution, diversity and substrate specificity has provided new insights into the function of these enzymes. In plants, GSTs appear to be implicated in an array of different functions, including detoxification of xenobiotics and endobiotics, primary and secondary metabolism, stress tolerance, and cell signalling. This review focuses on plant GSTome and attempts to give an overview of its catalytic and functional role in xenome and plant stress regulatory networks.
Collapse
Affiliation(s)
- Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| | | | - Ourania Pavli
- University of Thessaly, School of Agricultural Sciences, Department of Agriculture, Crop Production and Rural Environment, Fytokoy Street, 384 46 N. Ionia, Magnisia, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Zhou Y, Guo T, Tang G, Wu H, Wong NK, Pan Z. Site-Selective Protein Immobilization by Covalent Modification of GST Fusion Proteins. Bioconjug Chem 2014; 25:1911-5. [DOI: 10.1021/bc500347b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yiqing Zhou
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Tianlin Guo
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Guanghui Tang
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Hui Wu
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Nai-Kei Wong
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhengying Pan
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| |
Collapse
|
9
|
Roberts DW, Aptula AO. Electrophilic Reactivity and Skin Sensitization Potency of SNAr Electrophiles. Chem Res Toxicol 2014; 27:240-6. [DOI: 10.1021/tx400355n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. W. Roberts
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - A. O. Aptula
- SEAC, Unilever Colworth, Sharnbrook, Bedford MK44 1LQ, England
| |
Collapse
|